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Data-driven technique is a powerful and efficient tool for guiding materials design, which could supply as an alterna-
tive to trial-and-error experiments. In order to accelerate composition design for low-cost rare-earth permanent magnets,
an approach using composition to estimate coercivity (Hcj) and maximum magnetic energy product ((BH)max) via machine
learning has been applied to (PrNd–La–Ce)2Fe14B melt-spun magnets. A set of machine learning algorithms are employed
to build property prediction models, in which the algorithm of Gradient Boosted Regression Trees is the best for predicting
both Hcj and (BH)max, with high accuracies of R2 = 0.88 and 0.89, respectively. Using the best models, predicted datasets
of Hcj or (BH)max in high-dimensional composition space can be constructed. Exploring these virtual datasets could provide
efficient guidance for materials design, and facilitate the composition optimization of 2:14:1 structure melt-spun magnets.
Combined with magnets’ cost performance, the candidate cost-effective magnets with targeted properties can also be accu-
rately and rapidly identified. Such data analytics, which involves property prediction and composition design, is of great
time-saving and economical significance for the development and application of LaCe-containing melt-spun magnets.

Keywords: permanent magnet, materials design, machine learning, property prediction
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1. Introduction

Due to the excellent magnetic properties, Nd2Fe14B mag-
nets have been widely applied in sensors, motors, and gener-
ators since discovered in 1984.[1,2] With the ever-rising price
of Nd element, substituting inexpensive rare-earth metals La
and Ce for Nd in melt-spun magnets has recently drawn con-
tinuing interests.[3–6] Although the cost of magnets can be re-
duced, their magnetic properties (coercivity Hcj and maximum
magnetic energy product (BH)max) decrease simultaneously
as La or Ce content increases.[7] In fact, the magnets would
be unable to satisfy desired application requirement while the
replacement of La or Ce exceeding a certain threshold. Thus,
optimizing materials composition to balance the trade-off be-
tween cost and performance in LaCe-containing melt-spun
magnets is crucially important to their further development
and application. Traditionally, Nd–Fe–B typed magnets de-
sign has been guided by human intuition or trial-and-error ex-
periments. With increasing chemical complexity due to the
introduction of La or Ce, the number of potential composi-
tions with targeted properties to explore is too large for the
traditional method to be practical. Intuition would cause great
composition prediction errors and become unreliable. Experi-
ments, on the other hand, would suffer from lengthy and labo-

rious Edisonian synthesis-test cycles. Hence, an approach that
allows us to design cost-effective LaCe-containing magnets in
an accurate, fast and economical manner is highly desirable.

Fortunately, the successful application of data-driven
techniques in multicomponent materials provides an inspi-
ration for the materials design with such requirements.[8–13]

Using machine learning tools, a predictive model connecting
composition with property can be constructed by the statis-
tical rules and inferences learnt from massive experimental
data. It offers an opportunity to navigate high-dimensional
composition space for targeted property, and provides clear
guidance for materials design. For example, Austin et al.[11]

built a model to predict ionic conductivity of LixAaBbCc solid
lithium-ion conductor sorting out the best 21 compounds with
high cost performance from 12831 candidates. Xue et al.[12]

captured the relationship between composition and thermal
hysteresis (∆T ) in Ni50−x−y−zTi50CuxFeyPdz shape memory
alloy discovering 14 new compounds having ∆T < 3.15 K
from a potential space of ∼ 8× 105 compositions. However,
such efficient data analytics has not been reported on the mate-
rials design of permanent magnets. Here, we target this ques-
tion and focus on developing a predictive data-driven capabil-
ity to accelerate composition design for (PrNd–La–Ce)2Fe14B
melt-spun magnets.
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In the present work, four machine learning techniques
are attempted to build predictive models by deciphering mag-
nets nonlinear composition-property (Hcj or (BH)max) rela-
tionships. After model evaluation and ranking, the model with
the highest accuracy is selected for future property prediction
and composition design. Furthermore, we illustrate how to de-
sign the low-cost magnets with targeted properties in a compo-
sition space with two concerned dimensions: total rare-earth
content and Ce content. These researches would serve as a
valuable reference for the design of LaCe-containing magnets
with good cost-effectiveness.

2. Data-driven method
Figure 1 depicts our overall dataset preparation, model

training, model evaluation, and best-model prediction scheme.
Firstly, a dataset of 2:14:1 structure melt-spun magnets con-
taining the information of materials composition and mag-
netic properties is built. Each magnet data is labelled via
material descriptors or features X (composition here) and a
specific objective y (Hcj or (BH)max here). Next, consid-
ering that learning algorithms exhibit various advantages on
different datasets due to their respective characteristics, four
regression algorithms are employed to do data learning in
this work: Linear Regression, Decision Trees Regression[14]

(DTR), Support Vector Regression with a radial basis func-
tion kernel[15] (SVR.rbf), and Gradient Boosted Regression
Trees[16] (GBRT). During the model training process, the al-
gorithm parameters, such as the decision tree depth and the
minimum number of data required to split a node in DTR, the
penalty factor and the kernel function coefficient in SVR.rbf,

dataset (melt-spun magnets)

composition b property

model training

algorithms: linear/DTR/SVM/GBRT

model evaluation

k-fold cross-validation with R2 

best predictive model

PrNdLaCe-FeCoTM-B
Hcj

(BH)max

Fig. 1. Schematic diagram of our data-driven approach to property pre-
diction and composition design of 2:14:1 structure melt-spun magnets
using machine learning technique.

and the learning rate and the number of boosting stages in
GBR, are adjusted to optimize the model performance by the
grid-search method.[17] All constructed models are evaluated
using k-fold Cross-Validation (CV) with respect to a perfor-
mance metric of R2 for predictive accuracy. R2 represents the
variance explained by the model (higher the better), whose
maximal value is equal to 1. After comparing their predictive
capabilities, the model with the highest R2 value is defined as
the best predictive model. Finally, the best model is used to
estimate magnets properties from the inputs of composition.
In turn, these virtual properties data can be applied to guide
magnets composition design. Machine learning modeling and
predictive analytics are implemented in Python 3.6 with the
scikit-learn open-source package.[18]

3. Results and discussion

The dataset of 2:14:1 structure melt-spun magnets col-
lected in this work contains 413 data from the published lit-
eratures and the experiments[5,6,19] in our laboratory. There
are 204 stoichiometric and rich-rare-earth magnets (single-
phase magnet), including 149 La/Ce-containing ones, and
209 lean-rare-earth magnets (composite magnet), among
which 40 are La/Ce-replaced ones. The data are prepro-
cessed for consistency using the chemical composition with
a form of (PrNdPrNd pLaLa pCeCe P)REsFeFeCoCoTMTMBB,
where PrNd p+La p+Ce p = 1, REs+Fe+Co+TM+B =

100, and TM represents the sum of Zr, Nb, Ga or Ti. The ma-
terial feature vector X = (REs, PrNd p, La p, Ce p, Fe, Co,
TM, B). Figure 2 shows the Pearson correlation coefficients
between the magnetic properties (Hcj or (BH)max) of magnets
and each variable in X . Pearson correlation coefficient is a
statistic measure of the linear correlation between two vari-
ables xi and yi. It has a value between +1 and −1, where
+1 is total positive linear correlation, 0 is no linear correla-
tion, and −1 is total negative linear correlation.[20] Here the
relative magnitude of the coefficient indicates the chemical el-
ement’s importance to Hcj or (BH)max. Each element in the
composition has its physical basis in terms of their influence
on magnets properties, which agrees with the prior knowledge
of rare-earth permanent magnets:

(i) The increase of rare-earth content is accompanied by
the decrease of iron content, which results in the weakening of
intergranular interaction and the decline of saturation magneti-
zation (Ms). Correspondingly, Hcj of magnets increases while
(BH)max decreases. Therefore, Hcj and (BH)max have a posi-
tive (or negative) and a negative (or positive) correlation with
the sum of rare-earth (or Fe content), respectively.

(ii) Because both magnetocrystalline anisotropy field
and Ms of La2Fe14B and Ce2Fe14B are lower than those of
Nd2Fe14B, the substitution of La or Ce would reduce Hcj and
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(BH)max of magnets. Both Hcj and (BH)max thus show posi-
tive correlations with Nd content but negative correlations with
La/Ce content.

(iii) Adding a small amount of Co, Zr, Nb, Ga, and Ti in
magnets can not only refine grain or optimize grain boundary,
that is beneficial to the improvement of Hcj, but also slightly
increase Ms or enhance the squareness of the demagnetization
curve, thereby resulting in the improvement of (BH)max. So
both Hcj and (BH)max are positively correlated with Co or TM
content.

(iv) Because rich-B magnets contain much non-magnetic
phases, which leads to the decrease of Ms, (BH)max shows a
negative correlation with the content of B. However, the pos-
itive or negative effect of B on Hcj depends on the position of
non-magnetic phases in the microstructure of magnets. Those
non-magnetic phases may act as pinning points that hinder the
domain wall movement increasing Hcj or as nucleation points
of the reversal magnetic domains reducing Hcj. Thus, the sta-
tistical correlation between Hcj and B content is almost equal
to zero.
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Fig. 2. Pearson correlation coefficients between Hcj or (BH)max and all fea-
tures in (PrNd–La–Ce)2(Fe-Co-TM)14B melt-spun magnets.

Not too high correlation coefficients in Fig. 2 imply that
there are complex nonlinear relationships between composi-
tion and magnetic properties in 2:14:1 structure melt-spun
magnets. To decipher these relationships, an appropriate fit-
ting model f can be learnt from the data to map the features X
to one target y, i.e., y = f (X). In turn, it can be used to predict
y for unexplored X . Before modeling, dataset is divided into
two parts. One part is used to train the model, and the other is
used to test quality of the model. Our machine learning algo-
rithms are trained and 5-fold cross-validated using a training
set containing 80% of our data. As shown in Fig. 3, R2-CV
of predictive models for Hcj based on Linear, DTR, SVR, and
GBRT is 0.71, 0.69, 0.82, and 0.88, respectively. Correspond-
ingly, R2-CV of predictive models for (BH)max is 0.74, 0.70,

0.84, and 0.89, respectively. It can be seen that the models
estimating Hcj or (BH)max using GBRT all exhibit the highest
scores, which are then thinked as the best models. Next, the
predicted accuracies of these two models need to be tested to
determine whether they are feasible. A simple way to do this
is to use an untrained data for evaluation. Figure 4 displays
the predicted results from the four models on the test set with
the remaining 20% of our data. If the model is perfect, the
predicted Hcj or (BH)max will be exactly the same as the mea-
sured one and all data points will align along the 45◦ diagonal
line. R2 of Hcj and (BH)max in Fig. 4 are close to those on
the training set (shown in Fig. 3), respectively. This indicates
that all the models have good generalization abilities. Com-
pared with the other three algorithms, the data based on GBRT
show the highest convergence along the 45◦ diagonal line, and
mean absolute errors (MAE) of Hcj and (BH)max are the small-
est, with the value of 1.04 kOe (1 Oe = 79.5775 A·m−1) and
1.13 MGOe, respectively. It is reasonable to believe that such
errors are comparable to that caused by preparation process
and absolutely far less than that from human intuition. Thus,
they are acceptable to the performance estimation of LaCe-
containing melt-spun magnets.
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Fig. 3. Performance (R2) of different predictive models for Hcj or
(BH)max on the training dataset. For each model, a 5-fold cross-vali-
dation is applied.

Now two accurate and robust prediction models (GBRT)
for Hcj and (BH)max have been constructed. They are capable
of building a property prediction dataset in an arbitrary ratio-
nal composition space with one or more dimensions, such as
the variables in X . Figure 5 presents the predicted maps of
Hcj and (BH)max for (PrNd1−Ce pCeCe P)REsFe93−REsTM1B6

melt-spun magnets and their corresponding performance-cost
ratio contours. (The cost of magnets is calculated merely by
rare-earth elements because of their high prices. As of Decem-
ber 2017, the prices of Ce and Nd are approximately 5.6 $/kg
and 72.7 $/kg, respectively.) From Fig. 5, we can clearly ob-
serve the changes of magnetic properties with the sum of rare-
earth as well as the content of Ce. These virtual data in this
space help to quickly locate composition regions with targeted
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Fig. 5. Predicted maps of (a) Hcj and (b) (BH)max using the best models (GBRT) for (PrNd1−Ce pCeCe P)REsFe93−REsTM1B6 melt-
spun magnets, and their corresponding cost performances. Circle represents a pure Nd magnet with Hcj about 11.0 kOe, which can be
replaced by the economical Ce-containing magnets with the same Hcj at the expense of (BH)max (Star).

Hcj or (BH)max. Considering the cost of materials, inexpen-
sive small composition space with the same properties can
also be easily sought out. For example, the melt-spun magnet
powders with a stoichiometry of Nd12.5Fe80.5TM1B6(Hcj =∼
11.0 kOe) are often used to prepare bonded magnets. From the
economical perspective, this kind of magnets can be replaced
by the new Ce-containing magnets with the same Hcj. In order
to avoid the decrease of Hcj after adding Ce element, empiri-
cal guides tell us that we can increase total rare-earth content
to compensate for the loss of Hcj at the expense of (BH)max,

but it is difficult to accurately determine the composition that
is needed. However, the small composition regions of Hcj =

∼ 11.0 kOe, e.g., centered on (Nd0.7Ce0.3)13Fe80TM1B6,
(Nd0.5Ce0.5)14Fe79TM1B6, or (Nd0.3Ce0.7)15Fe78TM1B6, can
be directly located from Fig. 5(a), without requiring experi-
mental guess-and-check in such a two-dimensional space. On
the whole, this data analytics can significantly reduce the time
and cost of materials design. It will be an efficient tool for pro-
moting the development of 2:14:1 structure melt-spun mag-
nets.
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4. Conclusion
In summary, we have demonstrated a machine learning

approach that involves property prediction to accelerate com-
position design of (PrNd–La–Ce)2Fe14B melt-spun magnets.
The model constructed via the Gradient Boosted Regression
Trees algorithm performs a powerful predictive capability for
both Hcj and (BH)max of magnets. Exploring the virtual com-
position space by the model, cost-effective magnets can be ac-
curately and quickly identified according to different perfor-
mance requirements.

Besides the composition of magnets, some microstruc-
tural parameters (e.g., grain size or alignment degree) greatly
affecting Hcj or (BH)max should be added as material features
to enhance models’ predicted accuracies. But because melt-
spun magnets prepared under the optimum conditions reported
usually exhibit almost the same microstructure, and the dif-
ferences in grain size or orientation degree are very small,
these material features are neglected while modeling. That
is why such high predicted accuracies can be obtained in this
work just by the composition of magnets. However, for the
magnets using other technologies, like hot-deformed or sin-
tered magnets, they form a variety of microstructure as com-
position or preparation process changes, and would present
more complex “property-composition-structure-process” rela-
tionships. In this regard, our follow-up work is focus on the
feature engineering and to collect microstructural or process
parameters of hot-formed and sintered magnets, and eventu-
ally to build high-performance property prediction models of
2:14:1 structure permanent magnets.
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