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Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great po-
tential for discovering new materials with good characteristics. Here, this technique has been used on composition design for
La(Fe,Si/Al)13-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three
prediction models are built by using a machine learning algorithm called gradient boosting regression tree (GBRT) to es-
sentially find the correlation between the Curie temperature (TC), maximum value of magnetic entropy change ((∆SM)max),
and chemical composition, all of which yield high accuracy in the prediction of TC and (∆SM)max. The performance metric
coefficient scores of determination (R2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the
models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can
not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition
for further magnetic refrigeration applications.

Keywords: La(Fe,Si/Al)13-based materials, composition design, machine learning, magnetic refrigeration
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1. Introduction

The magnetocaloric effect (MCE), reversible entropy or
temperature variation upon the change of external magnetic
fields, is an inherent quality of magnetic materials. Magnetic
refrigeration (MR) based on MCE is becoming a great topic
of current interest on account of the potential improvement
in environmental friendliness and high efficiency compared
to the conventional vapor compression methodology. MCE
materials are usually characterized in terms of the maximum
value of magnetic entropy change ((∆SM)max) in an isother-
mal process, and the Curie temperature (TC) around which the
material works. In the last two decades, significant progress
has been made in exploring large MCE materials for appli-
cations at low and room temperatures. Typical lowtempera-
ture MCE materials mainly include the rare earth-based inter-
metallic compounds, such as RCo2,[1,2] RNi,[3] etc. However,
more attention has been paid to room temperature MCE ma-
terials because of their potential applications in refrigerators
and air conditioners. These MCE materials mainly include
Gd5Si2Ge2,[4,5] MnAs1−xSbx,[6] MnFeP1−xAsx,[7] Heusler
alloys,[8,9] etc.

Among these MCE materials, La(Fe,Si/Al)13-based com-
pounds are commonly approved as one of the most promising

magnetic refrigerants. The binary LaFe13 phase does not exist
as a result of its positive formation enthalpy.[10] Therefore, a
third element, either Si or Al, had to be introduced to stabi-
lize a cubic NaZn13-type structure. For La(Fe,Si/Al)13-based
compounds, there are many studies focusing on improving its
MCE performance by, for example, changing the Fe and Si/Al
content,[10,11] doped transitional metal (Co and Mn),[12,13]

rare earth (Ce, Pr, Nd),[14–16] interstitials (H, C, B),[17–19]

etc. When the chemical composition of La(Fe,Si/Al)13-based
compounds is changed, (∆SM)max and TC may also change.
Predicting these physical features is not easy when the com-
position is complex. However, data-mining techniques us-
ing machine learning can be applied to build models for the
prediction of the relationship between physical features with
composition-related parameters that can be obtained prior to
experiment.

Machine learning is a field of computer science that pro-
vides computer systems with the ability to “learn” (i.e., pro-
gressively improve performance on a specific task) from data
without being explicitly programmed. Machine learning is
widely used in many fields after decades of development. It
can build a predictive model between features and target prop-
erty by using statistical rules from massive experimental data.
It is a powerful method to analyze large volume and multidi-

∗Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant
No. 51590880), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the National Key Research and
Development Program of China (Grant No. 2016YFB0700903).

†Corresponding author. E-mail: shenbg@iphy.ac.cn
© 2018 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

067503-1

http://dx.doi.org/10.1088/1674-1056/27/6/067503
mailto:shenbg@iphy.ac.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 27, No. 6 (2018) 067503

mensional data that are perfectly matched for materials design.
Materials design that involves machine learning has been used
successfully in various research fields.[20–24] For example, An-
ton et al.[22] built a machine learning model to make fast and
reliable predictions of the occurrence of Heusler versus non-
Heusler compounds for an arbitrary combination of elements
with no structural input on over 4× 105 candidates. Xue et
al.[23] built a model between composition and thermal hys-
teresis (∆T ) in Ti50Ni50−x−y−zCuxFeyPdz shape memory al-
loys and ultimately discovered 14 new compounds possessing
smaller ∆T than the original dataset from a potential space of
∼ 8× 105 compositions. Similar methods were also used in
the MCE field. Taoreed et al.[24] built a model to predict the
Curie temperature (TC) of manganite-based materials in differ-
ent dopants that found a proper manganite quickly.

To date, data-mining techniques using machine learn-
ing have not been reported in the materials design of
La(Fe,Si/Al)13-based compounds. In this paper, we success-
fully developed prediction models using a machine learning
algorithm called gradient boosting regression tree (GBRT)[25]

to predict the maximum value of magnetic entropy change
((∆SM)max) and the Curie temperature (TC) of La(Fe,Si/Al)13-
based materials based on chemical composition, which have
the potential to boost the speed of composition design research
fundamentally and provide implications for solving the chal-
lenging and elusive issue of finding a proper composition for
further application.

2. Data collection and model setup
The dataset of La(Fe,Si/Al)13-based materials was col-

lected from the published literatures and contained 144 pieces
of data.[26] Noting that the divergences of phase, Curie tem-
perature, and (∆SM)max for materials may reduce the accu-
racy of models’ prediction, all of the data we collected here

are guaranteed to be NaZn13-type structure, and the values of
Curie temperatures and (∆SM)max are reliable for model learn-
ing. The data feature we used here is chemical composition,
and the target properties we predicted are Curie temperature
TC and (∆SM)max under a magnetic field change of 0 T–2 T
and 0 T–5 T, respectively. Because some data from the dataset
may not contain all three of the target properties, the dataset
we used to build the prediction model for each target prop-
erty is not the same. For each target, we used 141 data points
for TC, 108 for (∆SM)max at 0 T–2 T, and 93 for (∆SM)max at
0 T–5 T.

The task we faced in supervised learning of traditional
machine learning field is a regression problem. The algorithms
that can handle this task mainly contain linear regression, de-
cision tree regression, support vector regression, and some en-
semble methods. The algorithm we used here is GBRT, which
belongs to the ensemble methods. The GBRT algorithm pro-
duces a prediction model in the form of an ensemble of weak
prediction models, which is an ensemble of regression tree
models. The algorithm trains weak regression tree models
once to make a weak prediction each time. Although the pre-
diction errors are large at first, the algorithm will iterate train-
ing new weak regression trees to make the prediction better.
Each new tree helps to correct errors made by the previously
trained trees. Boosting is based on the idea of whether a weak
model can be modified to become better. There are two im-
portant parameters in the GBRT algorithm: one is the number
of estimators, which means the number of weak regression
tree models; the other is the learning rate, which means the
speed of improvement during iterating training weak regres-
sion trees. The GBRT algorithm is considered to be one of
the best methods in machine learning. It can fit data where the
relationship between features and target properties is complex
well and perform robustly when facing outliers.

model  training model  evaluation model  prediction

GBRT algorithm
cross-validation

1. R2

2. MAE

training set (80%)

feature: chemical composition

target: Tc and -DSM

test set (20%)
based material

dataset (La(Fe,Si/Al)13-based materials)

new La(Fe,Si/Al)13-

find proper composition

random split

Tc and -DSM

Fig. 1. Overall setup processes for prediction models by using machine learning approach on La(Fe,Si/Al)13-based materials.
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From the dataset, we used the chemical composition as
a data feature and Curie temperature (TC) and (∆SM)max as
target properties. Our models will learn from the data to pre-
dict target properties via some features. The overall setup for
prediction models is shown in Fig. 1. There are three main
processes:

(i) Split the dataset into two parts: training set and test
set. The training set is used to train the model, and the test set
is used to evaluate the performance of the trained model. In
general, the training set is 80% of the entire dataset, and the
test set is 20%. To optimize performance, the dataset must be
split randomly.

(ii) Build the GBRT model. Then, search for the best
parameters of the model by the grid-search method.[27] The
performance metric is R2 for the model prediction of training
set after using k-fold cross-validation. R2 represents the vari-
ance explained by the model (the higher, the better), and its
maximal value is equal to 1.

(iii) Evaluate the model’s predictive performances on the
test set, as soon as model training finished. The metrics are R2

and MAE (mean absolute error: the lower, the better).
Finally, the model can be used to estimate target prop-

erties for new materials via inputs of chemical composition,
which can serve as a quick guide to composition design and
help find proper materials.

In this paper, all of the models’ setup and analysis are
implemented in Python 3.6 with the scikit-learn open-source
package.

3. Results and discussion

We used 108 data points to train the TC prediction model.
The data distribution is counted. As shown in Fig. 2(a), the
Curie temperatures TC of the data are all distributed in the
range of 0 K–400 K. Among those, the majority scatters in the
range of 150 K–300 K, covering the room temperature. We
randomly split the dataset between a training set (80%) and
a test set (20%) and used the training set to train the model
we built. As the training set is relatively small, fivefold cross-
validation is used on the training set data. In order to find the
best values of parameters (number of estimators and learning
rate) for the model, we use grid-search, which combines the
number of estimators and the learning rate with different val-
ues to train the model, and find the parameters that make up
the best R2 for the model as the best prediction model. For
this procedure, we chose learning rate from 0.1–1 and number
of estimators from 50–140, respectively, for all models. The
results are depicted in Fig. 2(b). We trained 100 combinations
of two parameters models and found that the best combination
is 90 for number of estimators and 0.4 for learning rate, which
is regarded as our best model.
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Fig. 2. (color online) (a) Data distribution for TC dataset. (b) Performances
of TC prediction models trained with different parameter combinations. The
best parameter combination is marked with red star.

After the best model is trained, it needs to be evaluated to
determine whether it is feasible. A general way is to use the
test set for the untrained data. The metrics we used to evalu-
ate are R2 and MAE. The results are depicted in Fig. 3. The
X axis is the predicted Curie temperature from the model, and
the Y axis is the measured one. If the model is perfect, the
predicted TC will be exactly the same as the measured one,
and all data points will align along the 45◦ diagonal line. The
result of training set is shown in Fig. 3(a), which shows great
fitting on measured TC. The result with 0.98 of R2 and 2.03 K
of MAE shows the model had been trained perfectly on the
training set. The result of evaluation of the model on the test
set is shown in Fig. 3(b). R2 is 0.96, and the MAE is 9.81 K,
which indicates the model has good generalization ability for
untrained data. In addition, that the training result is slightly
higher compared to the test result, as shown in Fig. 3, implies
that the model is a little overfit, which means the model predic-
tion corresponds too closely or exactly for the training set and
may result in failing to fit additional data reliably. However,
because the number of datasets is relatively small, model over-
fitting is unavoidable in principle. Overall, the TC prediction
model corresponds well with the generalization.
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The number of data points used to train (∆SM)max pre-
diction models for 0 T–2 T and 0 T–5 T is 108 and 93, re-
spectively. The data distributions are shown in Figs. 4(a)
and 4(c). (∆SM)max at 0 T–2 T is evenly distributed from 0
to 30 J·kg−1·K−1, with a peak in the bin of 5 J·kg−1·K−1–
10 J·kg−1·K−1. (∆SM)max at 0 T–5 T is evenly distributed
from 5 J·kg−1·K−1 to 30 J·kg−1·K−1, with maximum in the

bin of 25 J·kg−1·K−1–30 J·kg−1·K−1. The process of training

and selecting parameters is almost the same as that of TC. The

results for 0 T–2 T and 0 T–5 T are shown in Figs. 4(b) and

4(d), respectively. The best combinations are (100, 0.2) for

(∆SM)max at 0 T–2 T, and (80, 0.1) for (∆SM)max at 0 T–5 T,

respectively. We used these combinations as the best models.
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Fig. 3. (color online) Predicted scatter plots on TC dataset. (a) Training set and (b) test set.
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After training the best models, we use the test set to
evaluate the models. The metrics and process are the same
as for the TC prediction model. The two models’ results
are shown in Fig. 5. The results of the training set with
R2 = 0.98 and MAE = 0.60 J·kg−1·K−1 for 0 T–2 T and
R2 = 0.97 and MAE = 1.14 J·kg−1·K−1 for 0 T–5 T, respec-
tively, are shown in Figs. 5(a) and 5(c), which indicate the
models were well trained with the training set. The results

of evaluation of the model for the test set with R2 = 0.87

and MAE = 2.51 J·kg−1·K−1 for 0 T–2 T and R2 = 0.91 and

MAE = 2.53 J·kg−1·K−1 for 0 T–5 T, respectively, are ob-

tained and shown in Figs. 5(b) and 5(d). All the models have

good generalization ability. The results also show the two

models are somewhat overfit for the same reason as the TC

prediction model, which is unavoidable.

Predicted MCE/JSkg-1
SK-1

0 5 10 15 20 25 30 35

Predicted MCE/JSkg-1
SK-1

0 5 10 15 20 25 30 35

Predicted MCE/JSkg-1
SK-1

0 5 10 15 20 25 30

Predicted MCE/JSkg-1
SK-1

0 5 10 15 20 25 30

M
e
a
su

re
d
 M

C
E
/
J
Sk

g
-

1
SK

-
1

0

5

10

15

20

25

30

M
e
a
su

re
d
 M

C
E
/
J
Sk

g
-

1
SK

-
1

0

5

10

15

20

25

30

35

M
e
a
su

re
d
 M

C
E
/
J
Sk

g
-

1
SK

-
1

0

5

10

15

20

25

30

35

M
e
a
su

re
d
 M

C
E
/
J
Sk

g
-

1
SK

-
1

0

5

10

15

20

25

30
(a) (b)

(c) (d)

(c)

R
2=0.98

MAE=0.60 JSkg-1
SK-1

training set

R
2=0.87

MAE=2.51 JSkg-1
SK-1

R
2=0.97

MAE=1.14 JSkg-1
SK-1

R
2=0.91

MAE=2.53 JSkg-1
SK-1

DH=2 T
test set
DH=2 T

training set
DH=5 T

test set
DH=5 T

Fig. 5. (color online) Predicted scatter plots on (∆SM)max at 0 T–2 T and 0 T–5 T datasets. (a) and (c) Training set, (b) and (d) test set.

All of the models we built above have good predictive
performance. The model with (∆SM)max at 0 T–2 T performs
similarly to that with (∆SM)max at 0 T–5 T. Compared to the
(∆SM)max prediction models, the TC prediction model has bet-
ter performance. Because the datasets of the three models pos-
sess similar size, the phenomenon may result from the mag-
netic properties that the models predict. The Curie tempera-
ture, TC, is an intrinsic magnetic property for materials that
is hardly affected by the measurement methods. By contrast,
(∆SM)max is a calculated value from experimental results, and
is sensitive to the detailed measurement methods and exper-
iments. Considering the complexity of obtaining (∆SM)max,
the datasets for (∆SM)max may be of larger errors, which may
give rise to more uncertainty to predicate (∆SM)max than TC.

4. Conclusion

In summary, we successfully developed three prediction
models using a machine learning algorithm called GBRT to
predict two important magnetic properties of MCE materials:
(∆SM)max and TC, respectively, for La(Fe,Si/Al)13-based mate-
rials based on the chemical composition. Based on this model,
the properties of untrained data can be well predicted. Our
findings suggest that machine learning is very powerful and
efficient tools which can be used to accelerate composition
design and find proper composition for further applications in
practice.

In addition, the selection and construction of features are
the most important factors affecting the performance of the
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models. In further research, additional physical properties,
such as lattice constant and saturation magnetization, should
be included in the features as they can greatly affect the target
properties. Constructing more physical features for models
may significantly improve the performance.
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