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A B S T R A C T   

La-Co co-substitution is an effective method to improve the magnetic properties of Sr-hexaferrite but knowing the 
most suitable substitution amount requires many trial and error experiments. Combining high-throughput ex-
periments with machine learning techniques is a promising way to quickly realize the composition design. With 
that in mind, we adopted three frequently-used machine learning models, namely Gaussian process regression 
(GPR), support vector regression (SVR), and radial basis function network (RBFN) as candidate prediction models 
to learn the 145 samples accumulated from the high-throughput experiments. Furthermore, three nature-inspired 
algorithms called particle swarm optimization (PSO), genetic algorithm (GA), and grey wolf algorithm (GWA) 
were applied to search for the optimal combination of the hyper-parameters, improving the performance of the 
machine learning models. To compare the accuracy of these models and simultaneously validate the experi-
mental data’s reliability, the 20 samples under the same experimental conditions obtained from literature were 
selected as the testing data. The comparison results showed that the SVR model with the GWA algorithm (SVR- 
GWA) performed better than the other methods. After that, the predicted figures of saturation magnetization 
(MS) and coercivity (HcJ) were obtained by the SVR-GWA model. Moreover, five compositions not involved in 
training and testing data were randomly selected from the prediction figures to further verify the reliability of the 
SVR-GWA model, which achieves the goal of fast and accurate composition design of La-Co substitution Sr- 
hexaferrite.   

1. Introduction 

Due to the rapid expansion of electric vehicle and wind power in-
dustries presently, permanent magnets become important technologi-
cally and commercially, and constant research and development efforts 
are promoted from the foundation. Since the discovery of barium ferrite 
(BaFe12O19) in the 1950s [1], there has been an increasing degree of 
interest in the M-type hexagonal ferrites, which have high coercivity 
(HcJ), saturation magnetization (MS), and Curie temperature, good 
chemical stability, and simple preparation process [2]. Coupled with the 
high price of other permanent magnets caused by the scarcity of rare 

earth elements, hexagonal ferrites have a low cost and richer source of 
raw materials [3]. There are five crystallographically inequivalent Fe 
sites, 2a, 2b, 4f1, 4f2, and 12k, with moments of 5 µB for high-spin Fe3+

(d5) at the majority-spin sites (2a, 2b, and 12k), and those at the 
minority-spin sites (4f1 and 4f2) are coupled in an antiparallel manner 
along the c-axis, resulting in a ferrimagnetic structure with a saturation 
moment of 20 µB per formula unit (f.u.) in the ground state. The 
simultaneous substitution of La and Co in M-type Sr-hexaferrite (will be 
denoted by La-Co SrM) resulted in marked improvement in the magnetic 
performance [4], which is the only commercial ferrite magnets pro-
duced by Hitachi [5] and TDK [6]. Nowadays, several investigations 
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consider the improvement of these La-Co SrM, mainly focusing on 
Ca-doping by different synthesis methods [7–10], changes in micro-
structure and morphology [11–13], occupancy distribution of Co ions 
[14–17], and so on. 

However, with increasing variables as the change of these condi-
tions, the number of potential compositions with targeted properties to 
explore is too large for the traditional method based on trial and error, 
which is both time-consuming and costly. The computational approach 
in this connection is of inspiration to solve this problem by using ma-
chine learning (ML) tools. As the fourth scientific paradigm of materials 
science [18], ML has become important means of realizing materials 
design efficiently. It learns rules and laws from a large amount of 
experimental data, to build the complex relationships between perfor-
mance, composition, structure and process, and finally assist guidance of 
experiments, which greatly saves time and cost. But such efficient data 
analytics has been very rare in the research of hexaferrite, there are only 
three related studies so far. I. Kucuk [19] and H. Sozeri [20] used neural 
network models to predict the hysteresis loop and XRD phase identifi-
cation respectively of La substituted Ba-hexaferrite prepared from 
ammonium nitrate melt. T. Pourashraf [21] prepared 17 different 
ion-substituted ferrites by self-combustion sol-gel method and used an 
optimized support vector regression (SVR) model to predict remanence 
(Br) and coercivity (HcJ). These cases have achieved great success in 
some performance prediction of hexaferrite, but all of them are based on 
a single ML model. Based on the theory and characteristics, the perfor-
mance of the ML model is greatly affected by hyper-parameters and 
different ML models have different adaptability to different types of 
data. To this end, it is in urgent need of applying different ML models to 
search for the most suitable one with a suitable combination of 
hyper-parameters for a set of specific data. 

According to the above analysis, three frequently-used ML models 
(GPR, SVR, RBFN) and three nature-inspired algorithms (PSO, GA, 
GWA) are adopted simultaneously in this work to find the better- 
performed method for composition design of La-Co SrM. It should be 
noted that nature-inspired algorithms are applied to search for the 
optimal combination of the hyper-parameters to improve the prediction 
accuracy of the ML models. And then, the predicted figures of magnetic 
properties will be established based on the most suitable method for 
guiding the composition design of La-Co SrM. 

With the purpose of efficient and accurate composition design of La- 
Co SrM based on ML, the remainder of this paper is organized as follows. 
The experimental process, theory of ML models and nature-inspired 
algorithms, and workflow of this study are introduced in Section 2. 
Section 3 shows the training, validation, comparison, and application of 
the proposed composition design ML methods for La-Co SrM. In Section 
4, the specific conclusions of this study and prospects for future work are 
discussed. 

2. Methods 

2.1. Experimental and prediction model 

This paper adopts the methodology of combining high-throughput 
experiments and machine learning. As an important part of materials 
genomics technology, high-throughput experiments are to complete the 
preparation and characterization of a large number of samples in a short 
time [22]. Its core is changing the sequential iterative method used in 
traditional materials research to parallel processing to cause qualitative 
changes in material research efficiency. The advantage of combining 
high-throughput experiments with ML is that the former can provide 
massive basic data for the latter, at the same time provide experimental 
verification for calculation results, so that the calculation model can be 
optimized and corrected. It could reduce the cost of manpower and 
material resources in industrial development and shorten the research 
period. 

To achieve the proposed objectives of this study, focusing on the 

material composition of M-type ferrites, the predictive power of ML 
models on the magnetic properties of these ferrites was investigated. For 
this purpose, the starting materials were industrial grade with SrCO3 (97 
%), Fe2O3 (99.9 %), La2O3 (99 %), and Co2O3 (70 %). SrM ferrite of 
composition Sr1− xLaxFe12− yCoyO19 designed in orthogonal experi-
mental method, were prepared by a solid-state reaction method (defined 
x = y = 0 as pure sample). Stoichiometric mixtures of oxides were 
thoroughly ground in a ball mill, then calcined in corundum crucibles 
for 2 h in the air at 1250 ◦C. The hexaferrite structure was checked by the 
X-ray diffraction (XRD) technique. The XRD results revealed that the 
homogeneous phase of M-type Sr-hexaferrite was obtained. And the 
hysteresis loops of powders were measured at room temperature by 
using a vibrating sample magnetometer (SQUID-VSM). The whole 
experimental process is shown in Fig. 1. 

Before machine learning, we need to preprocess the experimental 
data. With the La-Co substitution amount changing, the ratio of Sr and 
Fe also changed, as the raw material purity of SrCO3 and Fe2O3 was 
different. Therefore, we set the independent variable X of this prediction 
model to the percentage content of each raw material. As Fig. 2 shows, 
we screened 145 sets of data containing compositions as well as per-
formances at the temperature of 1250 ℃. The four independent vari-
ables X = (X1, X2, X3, X4) are listed in Table 1, and the corresponding 
magnetic properties i.e., saturation magnetization (MS) and intrinsic 
coercivity (HcJ) of each data are used as the output value Y. We use 
machine learning methods to get two properties (Y = MS and Y = HcJ), 
that is, finding the relationship of Y = f (X). 

2.2. Machine learning model 

In general, different models have different adaptability to different 
types of data. With that in mind, three frequently-used classic machine 
learning models, namely Gaussian process regression (GPR), support 
vector regression (SVR), and radial basis function network (RBFN) are 
chosen for comparing the suitability of this type of sample. 

2.2.1. GPR 
Gaussian process regression (GPR) model [23] also called the Kriging 

model is an interpolation model, which uses Gaussian process controlled 
by covariance to generate continuous function. Meanwhile, GPR is an 
unbiased estimation model with uncertainty but its prediction error is 
minimized by optimizing hyper-parameters. For an individual x in a 
training sample x(i) (i = 1, 2, …, n), GPR supposes that the objective 
value satisfies the normal distribution with mean value μ and standard 
deviation σ2 defined as: 

Y =
[
Y
(
x(1)

)
, Y

(
x(2)

)
,…, Y

(
x(n)

) ]
(1) 

The relationship between two individuals in Y is as follows: 

cov
[
Y
(
x(i)

)
,Y

(
x(j)

) ]
= σ2R

[
R
(
x(i), x(j)

) ]
(i = 1, 2,…, n) (2)  

Where R is a symmetric correlation matrix; n is the number of samples; R 

Fig. 1. High-throughput experimental procedure.  
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is the correlation Gaussian kernel function between two individuals as 
follows: 

R
(
x(i), x(j)

)
= exp

[

−
∑ndv

k=1
θk
⃒
⃒xi

k − xj
k

⃒
⃒Pk

]

(3)  

Where ndv is the number of design variables; θ and p are the hyper- 
parameters; |xi

k − xi
k| is the distance between two individuals in the di-

rection of the kth design variable. 
The maximum likelihood estimation of the real objective value Y(x) 

is used to find the statistic-parameters μ and σ2, and the mathematical 
form is as follows: 

ln(L(Y) ) = −
n
2

ln
(
σ2) −

n
2

ln(|R| ) −
(y − 1u)T R− 1(y − 1u)

2σ2 (4)  

Where 1 represents the column vector of ones; L represents the 
maximum likelihood estimation. The GPR model is established once the 
μ and σ2 are obtained. Fig. 3 vividly shows the principle of the GPR 
model. 

2.2.2. SVR 
Support vector regression (SVR) is to use the SVM (support vector 

machine) algorithm to find a regression plane so that all the data are the 
closest to the plane. In this way, the SVR model can be used for linear/ 
non-linear classification and regression, has low generalization error 
and computational complexity, and can solve high-dimensional prob-
lems. The mathematic form of the SVR model is as follows: 

ŷ
(

x
)

=
∑NS

k=1
αkK

(

xk, x
)

+ b (5)  

Where: b and αk are the scalar parameters during the training procedure; 
K(xk, x) is the kernel function. The detailed theory and training process 
of the SVR model are as described previously [24]. It is worth 
mentioning that the accuracy of the SVR model is highly dependent on 
the choice of the kernel function. The performance of the SVR model is 

Fig. 2. The statistic of compositions (Sr, Fe, La, and Co) and magnetic properties (Ms and HcJ) of 145 La-Co substitution Sr-hexaferrite sets of data from high-through 
experiments for training set: (a) content of Sr; (b) content of Fe; (c) content of La; (d) content of Co; (e) Ms; (f) HcJ. 

Table 1 
Four independent variables X = (X1, X2, X3, X4) of ML models.  

Notation Description 

X1 Mass fraction of Strontium Carbonate（wt. %） 
X2 Mass fraction of Iron oxide（wt. %） 
X3 Mass fraction of Lanthanum Oxide（wt. %） 
X4 Mass fraction of Cobalt Oxide（wt. %）  

Fig. 3. Diagram of GPR model.  
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highly affected by the kernel function parameter γ and penalty factor c. 
To better understand the principle of the SVR model, Fig. 4 vividly 
shows the geometric principle of the SVR model. 

2.2.3. RBFN 
Radial basis function network (RBFN) [25] is one of the simple 

training and fast learning convergence machine learning model which 
can evaluate most nonlinear relationships with relatively high precision. 
Due to the low computational complexity, the RBFN model is chosen as 
one of the machine learning models in this study. And then, the evalu-
ation accuracy of the RBFN model is highly affected by the two 
hyper-parameters, variance σ and the weight coefficient vector ω. To 
vividly visualize the structure of the RBFN model, Fig. 5 displays the 
specific schematic diagram. 

According to the above discussion, hyper-parameters play an 
essential role in the evaluation accuracy of these models. For this pur-
pose, the statistic of the hyper-parameters which need to be optimized 
are shown in Table 2. 

2.3. Optimization algorithm 

One of the most essential aspects of applying machine learning 
methods is to establish the model with adequate accuracy and efficiency. 
Meanwhile, the hyper-parameters of the machine learning model 
directly determine the performance and prediction accuracy of the 
model. To address this issue, searching for the suitable hyper-parameters 
of the machine learning model is the promising way. The appropriate 
combination of hyper-parameters can significantly improve the predic-
tion accuracy of the model. Therefore, the heuristics intelligent algo-
rithms which can achieve global optimal search are applied in this study 
to find the hyper-parameters and improve the prediction accuracy of 
machine learning models. Nevertheless, the same as the machine 
learning models, different algorithms have different adaptability. To this 
end, three frequently-used algorithms, namely particle swarm optimi-
zation (PSO), genetic algorithm (GA), and grey wolf optimizer (GWO) 
are adopted as the optimizer. 

2.3.1. PSO 
The particle swarm optimization (PSO) algorithm [26] is an opti-

mization algorithm based on swarm intelligence, which is characterized 
by fewer parameters, easy implementation and fast convergence. For an 
optimization problem, the PSO algorithm obtains the optimal solution 
through iterative steps. The basic idea is to regard each solution as the 
position of a particle in the searching space, and each iterative solution 
process as a motion of particle swarm in the searching space. To show 
the iteration process more vividly, the typical trajectory of a particle 
concerning the velocity and position of the particles in the PSO algo-
rithm is displayed in Fig. 6. It is worth mentioning that the specific algorithm parameters adopted in the PSO algorithm are displayed in  

Table 3. 

2.3.2. GA 
The genetic algorithm (GA) is an algorithm born regarding the 

principle of survival of the fittest in nature [27]. According to the 
principle of survival of the fittest, the GA algorithm evolves generation 
by generation to produce better and better approximate solutions 
through replication, crossover and mutation. The genetic algorithm can 
optimize the search range, has strong global searchability, and does not 

Fig. 4. The diagram of the SVR model.  

Fig. 5. The structure of the RBFN model.  

Table 2 
The hyper-parameters for optimization of the models.  

Model Hyper-parameter one Hyper-parameter two 

GPR θ p 
SVR γ c 
RBFN σ ω  

Fig. 6. Typical trajectory of a particle with respect to the velocity and position 
of the particles in the PSO algorithm. 

Table 3 
Specific parameters of the PSO algorithm.  

Parameters Value 

Size of the population (m) 50 
Number of iterations 100 
Weight parameter (ω) 0.8 
Acceleration constants (c1, c2) 1.8 
Maximum velocity of the particle (Vmax) 1  
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have too many constraints and rules. In general, there are three main 
steps called crossover, mutation, and selection in GA. The specific dia-
gram and parameters of the GA are displayed in Fig. 7 and Table 4. 

2.3.3. GWA 
The grey wolf algorithm (GWA) [28] was introduced to optimize the 

hyper-parameters of these three models. In the GWA, the best solution is 
the α wolf, the second-best is the β wolf, the third-best is the γ wolf, and 
the other solutions are δ wolves. During the searching process, α, β, and γ 
wolves lead the search for the optimal solution. When the stop condition 
is achieved, the α wolf is output as the best solution. The encircling prey 
behavior of the wolves is described in Fig. 8. The related parameters of 
the GWA are shown in Table 5. At the beginning of the iteration of these 
three algorithms, the initial solutions are randomly generated by the 
Latin hypercube sampling (LHS). 

2.4. Workflow of this paper 

According to the three ML models and three algorithms, there are 9 
combinations of models and algorithms named as GPR-PSO, GPR-GA, 
GPR-GWA, SVR-PSO, SVR-GA, SVR-GWA, RBFN-PSO, RBFN-GA, and 
RBFN-GWA. The scheme of using machine learning technology to 
establish a material performance prediction model is shown in Fig. 9. 
First, we sorted out all the experimental data according to Table 1. As 
shown in Fig. 2, this dataset measured 4 features of each 145 samples. 
Next, the regression analysis was performed using GPR, SVR, and RBFN 
algorithms, and the models were optimized by PSO, GA, and GWA, thus 
we got 9 methods. The 20 sets of data collected from the literature were 
subjected to validation. Then the model with the smaller MAE, MRE and 
RMSE, and larger R2 was selected as our prediction model, which can 
realize predicting performance value by inputting a certain variable. 
Finally, performance (HcJ and MS) prediction images are obtained with 
two dimensions——La content and Co content. 

3. Results and discussion 

In this section, the characteristics of La-Co SrM samples were 
analyzed by the Pearson correlation. And then, using Python program 
and the core code of Scikit-learn to implement the 9 methods established 
and validated by 145 experimental samples and 20 literature samples, 
respectively. After that, the composition design with specific magnetic 
properties (MS and HcJ) of La-Co SrM was conducted. 

3.1. Correlation analysis of the composition 

Pearson correlation coefficient is used to measure the linear corre-
lation between two variables X and Y as formula (6) shows. The value 
range is between − 1 and 1. − 1 means complete negative correlation, 
while +1 means complete positive correlation and 0 means no linear 
correlation. In other words, the greater the absolute value, the stronger 
the correlation [29]. But the Pearson correlation coefficient has an 
obvious defect in that it is only sensitive to linear relationships. If the 
relationship is non-linear, even if there is a one-to-one correspondence 
between the two variables, it may be close to 0. Fig. 10 is the correlation 
histogram between every variable including 4 independent variables 
and 2 dependent variables in our samples, which are in line with pre-
vious experience. 

ρx,y = corr(x, y) =
cov(x, y)

σxσy
=

E[(x − x)(y − y) ]
σxσy

(6) 

In general, all correlation coefficients are very small, indicating that 
there is a complex nonlinear relationship between the magnetic prop-
erties and composition of La-Co SrM. Compared with the relatively 
strong correlation between the HcJ and each variable, all the correlation 
of the MS is very weak. This also reveals that the method of increasing 
the saturation magnetization by ions substitution is difficult to control. 

From the perspective of each composition, first, the Fe/Sr ratio has 
an obvious effect on the magnetic properties of strontium ferrite. Studies 
have shown that the iron-deficiency formula can cause vacancies in the 

Fig. 7. Optimization process of GA.  

Table 4 
Parameters used in the GA algorithm.  

Parameters Value 

Size of the population (m) 50 
Number of iterations 100 
Mutative probability 0.005 
Cross probability 0.65  

Fig. 8. Optimization process of GWA.  

Table 5 
Parameters used in the GWA algorithm.  

Parameters Value 

Size of the population (m) 50 
Number of iterations 100 
Synergy coefficient vector A Rand (− 2,2) 
Synergy coefficient vector C Rand (0,2) 
Max-step 1  
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crystal structure [30–32]. On the one hand, the appearance of these 
vacancies facilitates the migration of ions during the sintering process 
and promotes the progress of the solid-state reaction, thereby generating 
more M-phase and promoting the compactness of the sample. On the 
other hand, the design of iron-deficiency formula can effectively sup-
press the appearance of non-magnetic miscellaneous α-Fe2O3 caused by 
excess Fe, and at the same time, SrO may be produced at the grain 
boundary, which can effectively inhibit the growth of grains, thereby 
significantly improving the HcJ of the material. Therefore, when the 
Fe/Sr ratio is less than 12, it is more conducive to high HcJ. Secondly, 
when the rare earth element La3+ ions replace Sr2+ in strontium ferrite, 
it can be known from the principle of electricity price balance that the 
corresponding equivalent amount of Fe3+ in 2a and 4f2 will become Fe2+

[33]. The change in valence increases the exchange coupling between 
Fe3+—O2—Fe3+ at 12k, so that the MS gradually improves with the in-
crease of La3+ concentration; and the anisotropy of Fe2+ is larger than 
Fe3+, causing HcJ increases. As the amount of single ion Co substitution 
increases, the MS decreases mainly because that Co occupies a certain 
proportion of 2a and 12k positions, and the ionic magnetic moment of 
Co2+ is 3 μB, which is less than that of Fe3+. The total effect is that the 

molecular magnetic moment in the spin-up direction is reduced, so the 
MS decreases, and after the energy level of Co2+ splits in the crystal field, 
the orbital angular momentum is not completely “frozen”, being a 
stronger anisotropy than Fe3+ [34]. 

3.2. Comparison and verification of machine learning models 

To validate the accuracy of the machine learning models and the 
reliability of the experimental data simultaneously, the 20 sets of data 
under the related experimental conditions obtained from works of 
literature [35–37] were applied as a validation set. As Fig. 11 shows, the 
20 sets of data are also sintered in solid-state reaction for La-Co substi-
tution and contain MS and HcJ performance parameters. The main sta-
tistic parameters of the experiment training sets and literature testing 
sets are shown in Table 6. 

The accuracy of a prediction model needs to be evaluated. In this 
paper, four frequently-used metrics namely, mean absolute error (MAE), 
mean relative error (MRE), root mean squared error (RMSE), and R- 
squared (R2) were adopted to test whether the models are feasible. 
Meanwhile, the specific formula of these four metrics can be found in the 
reference [38]. 

The 4 quality metrics of the nine combinations for MS are shown in  
Fig. 12. It is known that the more accurate the prediction, the more the 
point will be along with the forty-five-degree diagonal distribution. 
Obviously, the SVR-GWA model performs better than the other 8 models 
on the prediction of MS. More specific, the MAE, MRE, RMSE, and R2 are 
0.50, 0.72 %, 0.56, and 0.9919, respectively. The MAE, MRE, and RMSE 
are small enough while the R2 is close enough to 1 which means the SVR- 
GWA method meets the requirements evaluation accuracy. As for the 
HcJ, it can be intuitively seen from Fig. 13 that the prediction results of 
the SVR-GWA method were closer to the forty-five-degree slope line. For 
more quantitative analysis, the MAE, MRE, RMSE, and R2 of the SVR- 
GWA method are 0.1049, 3.21 %, 0.1201, and 0.9818, respectively. 
That is to say, the combination of the SVR model and GWA algorithm is 
more suitable for this type of problem. 

3.3. Composition design of La-Co SrM 

Now two accurate prediction models for MS and HcJ have been 
constructed. They can build a property prediction dataset in an arbitrary 
rational composition space with one or more dimensions, such as the 
variables in X. We use the selected optimal model SVR-GWA to predict 
2201 points in the component space and drew the contour map as shown 

Fig. 9. Machine learning process of this work.  

Fig. 10. Pearson correlation histogram of four independent variables (content 
of Sr, Fe, La, and Co) and two dependent variables (Ms and HcJ): the red rep-
resents Ms; the blue represents HcJ. 
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in Fig. 14, from which we can obtain corresponding MS and HcJ of the 
Sr16− xLaxFe84− yCoy-O (x and y are mass fractions) ferrite with the mass 
fraction of cobalt oxide as x and the mass fraction of lanthanum oxide as 
y. The dotted lines in the figure represent the contour lines of each 
performance. The warmer the color, the higher the performance. These 
two prediction graphs show that there is almost no intersection between 
the highest points of the two performances, reflecting that MS and HcJ 
cannot reach the maximum at the same time, which is in line with our 
perception and can be proved by the Eq. (7) [39] that MS and HcJ are 
inversely proportional: 

HcJ =
2K

μ0MS
(7)  

where K is the magnetocrystalline anisotropy constant and μ0 is the 
universal constant of permeability in free space, 4π × 10− 7 H/m. 

However, we can adjust the La-Co composition to focus on a certain 
performance according to the actual situation. Otherwise, we can easily 
find high magnetic properties and realize composition design quickly in 
the prediction map. For example, as Fig. 15(a) shows, the blue area 
represents the region of high HcJ with moderate MS (HcJ ≥ 5.0 kOe and 
MS ≥ 70 emu/g). Similarly, the red area is the region of high MS with MS 

≥ 80 emu/g and HcJ ≥ 4.0 kOe. To further validate the accuracy of the 
prediction model, the Latin hypercube sampling (LHS) [40] method was 
adopted to randomly generate five representative samples from Fig. 15 
(a) for experimental validation. Using the high MS and high HcJ regions 
as the demarcation, five points were labeled as numbers 1–5 in the di-
rection of increasing La concentration x as shown in Fig. 15(a), which 
avoided all compositions of the training and validation sets. The La-Co 
SrM samples represented by the five points were prepared with the 
same process and their magnetic hysteresis lines were measured at room 
temperature as shown in Fig. 15(b). The substitution molar amounts of 
La and Co for the five samples, as well as the measured and predicted Ms 
and HcJ, and calculated magnetic energy product (BH)max are summa-
rized in Table 7. The experimental and predicted values of these five 
samples were plotted against the sample number in Fig. 15(c), which are 
very close to each other. And the accuracy evaluation indexes were also 
counted and shown in Fig. 15(c), where the MAE, MRE, RMSE, and R2 of 
MS are 0.4, 0.52 %, 0.42, and 0.995, respectively. Meanwhile, the four 
indexes of HcJ are 0.068, 1.48 %, 0.084, and 0.983, respectively, which 
are similar to that of the testing set. Although the sample size of 
experimental validation is small, it fully reflects the accuracy of the 
prediction model. 

Fig. 11. The statistic of compositions (Sr, Fe, La, and Co) and magnetic properties (Ms and HcJ) of 20 La-Co substitution Sr-hexaferrite from literature [35–37] for 
validating the accuracy of models: (a) content of Sr; (b) content of Fe; (c) content of La; (d) content of Co; (e) Ms; (f) HcJ. 

Table 6 
The main statistic parameters of training and testing sets.  

Index Training set (145) Testing set (20) 

Sr Fe La Co MS HcJ Sr Fe La Co MS HcJ 

Min value  1.42  77.85  0  0  43.72  1.55  2.83  82.54  0.74  0.42  60.64  1.84 
Max value  13.59  86.71  9.95  3.37  89.24  5.46  11.95  89.29  7.66  3.61  79.89  4.94 
Mean value  8.08  82.17  4.97  1.64  72.59  3.61  7.01  86.42  4.33  1.60  70.66  3.58 
STD  4.10  2.69  3.23  0.97  5.96  1.09  2.16  2.26  1.88  0.81  6.26  0.89  
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According to the variation of magnetic properties with sample 
number, i.e., La concentration x, shown in Fig. 15(c) that to obtain high 
MS, the concentration of Co is larger than that of La, because the Co ions 
with a smaller magnetic moment (3 μB) mainly occupy the spin-down 
sites of hexaferrite and increase the net total magnetic moment [41]. 
On the contrary, the magnetic anisotropy is further increased due to 
Fe2+ by charge compensation mechanism when La concentration is 
larger than Co [42], resulting in higher HcJ. Furthermore, after 
comparing the (BH)max of five samples, sample No.4 with medium MS 
and HcJ performed the best. This means that we can choose the 
composition range reasonably according to actual demand. However, 
the factors affecting the magnetic properties are complex, especially 
second phases, defects, grain boundaries, etc. in polycrystalline samples. 
More characteristic parameters are needed for in-depth research on 
materials under wider process conditions. There is still a long way to go 
in machine learning research in the field of permanent ferrites. 

4. Conclusion 

In this study, a fast and accurate prediction of magnetic properties 
and composition design model for La-Co SrM was established based on 
high-through experiments, machine learning (ML) models, and nature- 
inspired algorithms. To screen out the most suitable method for the 
composition designing method of La-Co substitution, comparative 
research with 9 methods composed of 3 ML models and 3 algorithms 
were trained and validated with 145 samples obtained by high- 
throughput experimental and 20 data from the literature, respectively. 
It is concluded that the SVR-GWA method can predict both the MS and 
HcJ more accurately than the other 8 methods. In detail, in the SVR-GWA 
method the 4 quality metrics MAE, MRE, RMSE, and R2 of the MS are 
0.50, 0.72 %, 0.56, and 0.9919, while 0.1049, 3.21 %, 0.1201, and 
0.9818 for HcJ. 

Furthermore, the magnetic properties of Sr1-xLaxFe12-yCoyO19 ferrite 
were predicted by the SVR-GWA method, from which, the influence of 

Fig. 12. Testing results of Ms by the 9 methods: the horizon axis represents the true values, and the vertical axis represents the predicted values by the corresponding 
models. The SVR-GWA model marked in red has the best prediction effect, and its R2 reaches 0.9919. 
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La-Co substitution on the two magnetic properties MS and HcJ of Sr- 
hexaferrite can be intuitively understood. The predicted results can be 
used as a reference for the efficient composition design of La-Co SrM. It 
is indicated that obtaining the composition with high MS and HcJ 
simultaneously is difficult, but we can realize position design from the 
prediction figure based on the actual demand. In general, when La 
concentration x is smaller than Co concentration y within x ≤ 0.3, the 
MS will be enhanced; otherwise, as x increases and is larger than y in the 
maximum substitution limit, the improved MS would be obtained, but 
the samples with moderate MS and HcJ may have a larger magnetic 
energy product (BH)max. 

The above results have shown that the ML model could be a powerful 
method to quickly identify promising candidate strontium ferrite with 
target magnetic properties. And the reliability and applicability of the 

SVR-GWA method for the composition design of La-Co SrM have also 
been proved, which can also be applied to other materials with sufficient 
experimental data. It is worth noting that we merely took the La-Co SrM 
at the temperature of 1250 ℃ as an example due to the time-consuming 
experiment. Furthermore, we will add more process and microstructure 
parameters as the control variable in the prediction model to improve 
the practicability of the machine learning method and help the devel-
opment of permanent magnets in the future. 
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