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Multistate magnetic memory effect in heterostructures composed of FeRh thin films with antiferromagnetic (AFM)-ferro-
magnetic (FM) phase transition and (001)-oriented PMN-PT substrates has been investigated. Utilizing a unipolar electric field,
the nonvolatile change in magnetization was nearly doubled compared with that obtained utilizing a conventional bipolar bias.
Four stable nonvolatile magnetic states were obtained over a broad temperature span, from 320 to 390 K, by adjusting the
amplitude of the unipolar electric pulses, demonstrating the possibility of realizing a multistate nonvolatile magnetic memory in
the FeRh/PMN-PT heterostructures. This work provides a new strategy for enhancing the magnetic response by utilizing
unipolar electric fields and promotes the utilization of AFM-FM phase transition materials in multifunctional information storage
and novel spintronic devices.
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1 Introduction

The explosive growth of data puts forward higher and stricter
requirements on information storage, prompting the ex-
ploitation of random-access memories with high density, low
energy consumption, and high speed. Nonvolatile magnetic

memories based on the electric-field control of magnetism
are one of the most promising candidates, and their high
speed and low energy consumption have been demonstrated
[1-5]. The key problem in realizing nonvolatile magnetic
memories is to switch magnetic states in a reversible, energy-
efficient, and stable manner [6]. Artificial ferromagnetic
(FM)/ferroelectric (FE) multiferroic heterostructures, ex-
hibiting magnetic and ferroelectric order simultaneously,
have become a potential candidate for the realization of
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electric-field control of magnetism owing to their strong
magnetoelectric (ME) coupling. In these systems, the mag-
netic state can be switched only by changing a single para-
meter (i.e., the applied voltage) [7-11]. However, most
existing studies have focused on FM or ferrimagnetic ma-
terials combined with FE substrates (mostly
Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT)), such as Co40Fe40B20/
PMN-PT [12], Ni/PMN-PT [8], La2/3Sr1/3MnO3/PMN-PT
[13], and CoFe2O4/PMN-PT [14]. Antiferromagnetic (AFM)
materials are rarely considered because of the absence of a
net magnetic moment in the ground state, which renders
them difficult to manipulate in a conventional manner. Ac-
tually, the stray field and susceptibility in AFM materials are
so small that there is no need to consider external field dis-
turbances in AFM memories. Therefore, it is also interesting
to realize the control of the AFM order. Recently, AFM
materials have been demonstrated to have a great potential as
memory resistors through the manipulation of AFM aniso-
tropic magnetoresistance (AMR) in FeRh thin films [15].
The B2-ordered FeRh alloy undergoes an AFM-FM phase
transition at approximately 380 K and is in an AFM state at
room temperature [16]. Indeed, in addition to temperature,
the AFM-FM phase transition can be driven by other factors,
such as strain [17-20], spin-polarized currents [21], and
electric currents [22,23]. Among these, electric-field control
of the AFM-FM phase transition through strain at the inter-
face is one of the most energy-efficient techniques for
magnetic memory applications. In particular, when a non-
volatile strain is generated through the application of elec-
tric-field pulses, the nonvolatile magnetic memory effect
may be realized [6,10,24,25]. The PMN-PT single crystal is
the most studied FE substrate, in which nonvolatile strain can
be induced [26]. Its piezoelectric response crucially depends
on the multidomain structures and the poled direction of the
electric field. When poling along the (001) direction, a
nonvolatile strain can be obtained in PMN-PT through 109°
FE domain switching under a bipolar electric field, and its
strain curves exhibit a loop-like shape [11]. However, 109°
FE domain switching accounts only for ~26% of the total
domain switching events in (001)-oriented PMN-PT, and the
corresponding nonvolatile strain is only about 0.05% [12].
Besides, only two magnetic states have been reported uti-
lizing this nonvolatile strain. The realization of a multistate
magnetic memory would be beneficial to solve the long-
standing issue of low storage density [27].
In this work, the nonvolatile compressive strain in (001)-

oriented PMN-PT substrates produced via a unipolar electric
field was studied over a broad temperature span and was
exploited to control the AFM-FM phase transition in FeRh
films. The nonvolatile manipulation of the magnetization
change in FeRh films obtained through a unipolar electric
field is almost double compared with that realized using a
bipolar electric field. Moreover, a multistate nonvolatile

control of the magnetism in a FeRh/(001)PMN-PT hetero-
structure was realized by adjusting the amplitude of the
unipolar electric-field pulses over a broad temperature span,
from 320 to 390 K. The observed multistate nonvolatile
control of magnetism in this FeRh/(001)PMN-PT hetero-
structure is of great significance to promote the use of AFM-
FM phase transition materials in multifunctional information
storage and novel spintronic devices.

2 Experimental details

FeRh films were deposited onto (001)-oriented single-crys-
talline PMN-PT (0.7(PbMg1/3Nb2/3O3)-0.3PbTiO3) sub-
strates (with dimensions of 5 mm (length) × 5 mm (width) ×
0.5 mm (thickness)) at 1023 K. For the deposition, magne-
tron sputtering with a power of 30 W was used, at an argon
pressure of about 0.2 Pa. The background vacuum pressure
was 2×10−6 Pa. Subsequently, the FeRh films were annealed
for 1 h in-situ at 1023 K and then cooled to room temperature
in vacuum. The FeRh target and PMN-PT substrates were
purchased. The structure and crystal orientation were char-
acterized using a Bruker AXS D8 Discover four-circle X-ray
diffraction (XRD) system with Cu-Kα radiation. The in-
plane magnetization was measured using a superconducting
quantum interference device (SQUID, Quantum Design)
with in-situ electric fields applied across the thickness di-
rection of the FeRh/PMN-PT structure via a Keithley 6517B
electrometer. For the electric bias, the FeRh films served
directly as the top electrode, whereas an Au layer was vapor-
deposited onto the bottom of the substrate to obtain the
bottom electrode. The leakage current was below 5 nA under
an electric field of ±8 kV/cm. The pulse width of the electric
field was less than 2 s.

3 Results and discussion

Figure 1(a) shows the XRD pattern of the FeRh/(001)PMN-
PT heterostructure at room temperature. It is clear that the
FeRh thin films grown onto the (001)-oriented PMN-PT
substrates are well oriented along the [011] direction, which
is consistent with our previous study [19]. To confirm the
AFM-FM phase transition properties of the FeRh thin films,
the temperature dependent magnetization (M-T) curves were
measured using magnetic fields of 0.5 and 5 T along the in-
plane [110] direction. The results are shown in Figure 1(b). A
consecutive two-step phase transition occurs in the FeRh/
(001)PMN-PT heterostructure, which has been demonstrated
to be related to the multi-FE domains in PMN-PT substrates
in our previous study [19]. As for the bulk, an external
magnetic field can shift the phase transition to a lower
temperature also for the FeRh films. With the assistance of a
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magnetic field, the phase transition temperature span can be
broadened to be 320-400 K, as marked by the shadowed area
in Figure 1(b).
Figure 2(a) shows the sketch of the FE domain evolution in

a (001)-oriented PMN-PT single crystal with vertical electric
field poling; a large compressive strain along the in-plane
[110] direction is generated in the substrate and exerted on
the FeRh film. To study the strain-mediated ME effect in the
FeRh/(001)PMN-PT heterostructure, the electric field tuning
of the magnetization (M-E curves) under bipolar sweeping of
the electric field (0→+8→0→−8→0 kV/cm) was measured
in the phase transition temperature span of 320-390 K, with
the magnetic field along the in-plane [110] direction and the
electric field along the out-of-plane [001] direction (see the
sketch in the inset of Figure 1(b)). Although different mag-
netic fields were adopted at different temperatures, similar
phenomena were observed over the whole temperature span.
A representative temperature of 320 K was chosen to illus-
trate the manipulation of magnetism with the assistant of a
5 T magnetic field. To eliminate the influence of the dia-
magnetic signal of the substrate and facilitate comparison,
the change in magnetization (ΔM) was used for all the re-
sults. Figure 2(b) shows two consecutive cycles of the ΔM-E
curves under a bipolar electric field of ±8 kV/cm (the arrows
indicate the sweep direction). The ΔM-E response exhibited
an asymmetric butterfly-like curve with a coercive field of
1.8 kV/cm, which is similar to that of the strain-mediated
FM/FE heterostructure reported in a previous study [25].
Repeated measurements demonstrated consistent results (see
the first and second cycles in Figure 2(b)). Actually, this type
of asymmetric butterfly-likeM-E curve can be separated into
butterfly-like (Figure S1(b)) and loop-like (Figure S1(c))
parts; the asymmetric response is related to FE domain
switching and the R-MA phase transition [25,28] stated
above. In the initial state at 0 kV/cm, the rhombohedral (R)
phase and monoclinic (MA) phase coexist because of the
polarization of the (001)-oriented PMN-PT substrates. Under

the bipolar sweeping of the electric field from 0 to +8 kV/cm
in Figure 2(b), the MA phase is first totally transformed into
R phase before the electric field reaches EC = +1.8 kV/cm.
During this process, the compressive strain is released so that
the magnetization increases. As the electric field increases
further, FE domain switching (②-③) and the R-MA phase
transition (③-④) occur, in which a large compressive strain
is generated and results in a decrease in the magnetization for
E > EC. Under the bipolar sweeping of the electric field from
+8 to 0 kV/cm, the MA phase is partially converted into the R
phase; thus, the magnetization increases. Similar to the case
of the positive electric field, under 0→−8 kV/cm, the MA-R
phase transition continues, and the R phase is totally re-
covered when the electric field reaches the coercive electric
field of −1.8 kV/cm. Thus, the magnetization increases fur-
ther as the electric field increases from 0 to −1.8 kV/cm. As
the electric field increases further, FE domain switching
(③-②) and R-MA phase transition (②-①) occur, leading to
a decrease in the magnetization. Throughout the electric-
field cycle (0→+8→0→−8→0 kV/cm), the 109° FE domain
switching generates loop-like M-E curves (Figure S1(c)),
whereas the 71°/180° FE domain switching and R-MA phase
transition generate a butterfly-like M-E curves
(Figure S1(b)). Therefore, an asymmetric butterfly-like M-E
curve occurs under the bipolar electric field in Figure 2(b). In
previous studies, only the loop-like part of the M-E curve
originating from the 109° FE domain switching in (001)-
PMN-PT single crystals was used to obtain the nonvolatile
control of magnetization in FM materials, whereas the but-
terfly-like part was considered to be volatile. However, the
109° FE domain switching, which generates the nonvolatile
strain, accounts only for about 26% of all the domain
switching events [12]. Besides, it has been demonstrated that
109° FE domain switching does not exist in all (001)-PMN-
PT samples. The defects or their configurations in the crys-
tals also play an important role in the occurrence of 109° FE
domain switching. The butterfly-like part is more common in

Figure 1 (Color online) (a) XRD patterns of the FeRh/(001)PMN-PT heterostructure at room temperature. (b) Temperature dependent magnetization (M-T)
curves of the FeRh/(001)PMN-PT heterostructure measured at magnetic fields of 0.5 and 5 T. The temperature ranges across which the phase transition
occurs on heating are marked by shadow areas. The inset shows a sketch of the FeRh/(001)PMN-PT heterostructure with the in-situ applied electric field,
where H and V represent the applied magnetic field and electric field, respectively.
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(001)-PMN-PT single crystals, but is believed to be volatile.
All the above aspects are detrimental for applications based
on the nonvolatile strain in FM/FE heterostructures. Herein,
we propose to utilize the butterfly-like part of the strain in
(001) PMN-PT single crystals to induce a nonvolatile strain
via a unipolar electric field. To confirm the generation of the
nonvolatile strain, the ΔM-E curves under unipolar sweeping
of the electric field (0→+8→0→−1.6→0 kV/cm) were
measured over the whole phase transition temperature span.
The ΔM-E curves resulting from three consecutive cycles at
a temperature of 320 K and a magnetic field of 5 T are shown
in Figure 2(c). Under the first cycle of unipolar sweeping of
the electric field from 0 to +8 kV/cm in Figure 2(c), the R
phase is first totally recovered when the electric field reaches
the coercive electric field of +1.8 kV/cm, and the magneti-
zation increases. As the electric field increases further, FE
domain switching and the R-MA phase transition occur and
the magnetization decreases because of the induced com-
pressive strain, which is the same as that in the bipolar
process. Under unipolar sweeping of the electric field from
+8 to 0 and then to −1.6 kV/cm, the MA-R phase transition
occurs, and the compressive strain decreases gradually,
leading to an increase in the magnetization. However, it
cannot be totally recovered because the unipolar electric field
of −1.6 kV/cm is smaller than the coercive field. Under
unipolar sweeping of the electric field from −1.6 to 0 kV/cm,
the FE polarization remains unchanged. In the next cycle,
from 0 to +8 kV/cm, FE domain switching cannot take place,
and the increase in the magnetization disappears as the
electric field goes from 0 to +1.8 kV/cm. The magnetization

also remains almost unchanged when the electric field is
smaller than the coercive field. When the electric field is
larger than the coercive field, both the R-MA phase transition
(③-④ in Figure 2(b)) and the MA-R phase transition (④-③
in Figure 2(b)) occur after removing the electric field. How-
ever, it cannot totally recover at zero field; thus, the polarization
in this case is different from that obtained after removing the
unipolar electric field of −1.6 kV/cm. Therefore, the ΔM-E
curves in Figure 2(c) form. During this process, a nonvolatile
strain is generated between two residual states at zero electric
field arising from the R-MA phase transition. Therefore, a stable
and reversible magnetization change ΔM between +0 and
−0 kV/cm was obtained, as can be seen clearly from
Figure 2(c). The value of this reversible magnetization change
reaches ΔM = 15.2 emu/cm3, which is almost twice as large
as that obtained under the bipolar electric field of ±8 kV/cm
(ΔM = 8.2 emu/cm3) shown in Figure 2(b). This enhance-
ment in the magnetization change ΔM is crucial for magnetic
memory applications considering the convenience of signal
detection and high-resolution requirements. Repeated mea-
surements demonstrate that the ΔM-E curves exhibit strong
consistency (see the red and blue curves in Figure 2(c)) after
the first cycle. More importantly, a multistate control of the
magnetism in the FeRh/(001)PMN-PT heterostructure can be
realized by adjusting the amplitude of the unipolar electric
field. Figure 2(d) shows the ΔM-E curves under three dif-
ferent unipolar electric fields (+8/−1.6, +8/−1.2,
+8/−0.8 kV/cm) at 320 K and 5 T. ΔM (−0) in the FeRh films
decreases as the amplitude of the unipolar electric field de-
creases, whereas ΔM (+0) in the three cases is almost the

Figure 2 (Color online) (a) Sketch of the FE domain evolution in a PMN-PT single crystal during poling along the [001] direction. The direction and
magnitude of the electric field are marked by the direction and length of the blue arrows, respectively. Electric-field dependent magnetization (ΔM-E) curves
under (b) bipolar sweeping of the electric field to ±8 kV/cm, (c) unipolar sweeping of the electric field to −1.6 and +8 kV/cm, and (d) unipolar sweeping of
different electric fields to −1.6/+8 kV/cm,−1.2/+8 kV/cm, and −0.8/+8 kV/cm, with the electric field applied along the out-of-plane [001] direction and the
magnetic field along the in-plane [110] direction in the FeRh/(001)PMN-PT heterostructure. All the relevant states labeled by the circled numbers in (a) are
correspondingly marked in the ΔM-E curves in (b) and (c).
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same. In particular, the ΔM values after removing the ne-
gative unipolar electric fields of −1.6, −1.2, and −0.8 kV/cm
remain almost unchanged, which is beneficial for nonvolatile
magnetic memories. On increasing the temperature, the
electric-field tuning of the magnetization follows the same
law, except for a reduction in the magnetic field. Above
370 K, the assistant magnetic field is no longer required.
This indicates the potential application of FeRh thin films in
magnetic memories over a broad temperature span.
Based on the electric-field control of magnetism in the

FeRh/(001)PMN-PT heterostructure, nonvolatile switching
of the magnetization can be realized via unipolar electric-
field pulses. The multistate switching of the magnetization in
FeRh thin films was investigated by applying selective uni-
polar electric-field pulses of −1.6, −1.2, and −0.8 kV/cm
over the whole temperature span of the AFM-FM phase
transition. The results at 350 K-2 T, 320 K-5 T, 390 K-0.01 T
are shown in Figure 3(a)-(c). It can be seen clearly that the
magnetic states can be well controlled by adjusting the
electric-field pulses (−1.6, −1.2, and −0.8 kV/cm) to fully or
partially transform the MA phase into the R phase. Conse-
quently, four stable nonvolatile magnetic states are obtained,
which can be reproduced after many repeated cycles. The
results at different temperatures (Figure 3(a)-(c)) follow the

same law, demonstrating a multistate nonvolatile magnetic
memory based on the FeRh/PMN-PT heterostructure over a
broad temperature span. However, the magnetization ex-
hibits a pronounced increase after applying the positive
electric-field pulse, and this magnetization increase is dif-
ferent at various temperatures. This behavior may be related
to the phase transition dynamics of the FeRh alloy [29,30].
The AFM-FM phase transition in the FeRh alloy can be
induced by both a magnetic field and stress/strain. A com-
pressive (tensile) strain favors the FM (AFM) phase and
increases (decreases) the magnetization. As mentioned be-
fore, when an electric field is applied vertically to the (001)-
PMN-PT single crystal, a compressive strain is induced
along the in-plane [110] direction. When the electric field is
removed, the compressive strain is partially reduced, leading
to an increase in the magnetization. As a result of the dy-
namics of the strain-induced phase transition in FeRh alloys,
the magnetization varies notably with time. When a negative
electric field is removed, the induced strain remains almost
unchanged. Therefore, the magnetization remains almost
unchanged while applying a negative electric-field pulse.
Considering the application requirements, the retention
properties of the ΔM states were also investigated, and the
corresponding representative results at 350 K and 2 T are

Figure 3 (Color online) Repeatable multistate switching of the magnetization obtained through the application of selective unipolar electric-field pulses of
−1.6, −1.2, and −0.8 kV/cm at (a) 350 K, 2 T, (b) 320 K, 5 T, and (c) 390 K, 0.01 T. (d) Retention of the magnetic states of the FeRh films after positive
(+8 kV/cm) and selective negative electric-field pulses (−1.6, −1.2, and −0.8 kV/cm) at 350 K, 2 T. In the lower panel of every image, the exploded diagram
of the electric-field evolution corresponding to the above magnetic measurement process is given.
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shown in Figure 3(d). As can be seen from this figure, the
magnetization was measured continuously for more than
1000 s after applying the electric-field pulses. The magne-
tization remains almost unchanged while applying the ne-
gative unipolar electric-field pulses, whereas a noticeable
relaxation occurs while applying the positive electric-field
pulses. After thousands of seconds, the magnetization sta-
bilizes gradually and is characterized by four well-defined
magnetic states. These results demonstrate that the electric-
field-controlled magnetization is stable, distinct, tunable, and
nonvolatile, further confirming the possibility of obtaining a
multistate nonvolatile magnetic memory based on the FeRh/
PMN-PT heterostructure over a broad temperature span.

4 Conclusion

In conclusion, by utilizing unipolar electric fields, the non-
volatile change in magnetization obtained in FeRh/(001)
PMN-PT heterostructure was found to be nearly doubled
compared with that induced by utilizing bipolar electric
fields. Moreover, four stable, nonvolatile magnetic states
were realized over a broad temperature span, from 320 to
390 K, by adjusting the amplitude of the unipolar electric-
field pulses. These results demonstrate the realization of a
multistate nonvolatile magnetic memory based on the FeRh/
(001)PMN-PT heterostructures over a broad temperature
span. This work is important for the realization of low power
consumption and high speed magnetic random-access
memory utilizing these AFM-FM phase transition materials.
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