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ABSTRACT: Electrically generated spin—orbit torque (SOT) has emerged as a powerful pathway to control magnetization for
spintronic applications including memory, logic, and neurocomputing. However, the requirement of external magnetic fields,
together with the ultrahigh current density, is the main obstacle for practical SOT devices. In this paper, we report that the field-free
SOT-driven magnetization switching can be successfully realized by interfacial ion absorption in perpendicular Ta/CoFeB/MgO
multilayers. Besides, the tunable SOT efficiency exhibits a strong dependence on interfacial Ti insertion thicknesses. Polarized
neutron reflection measurements demonstrate the existence of canted magnetization with Ti inserted, which leads to deterministic
magnetization switching. In addition, interfacial characterization and first-principles calculations reveal that B absorption by the Ti
layer is the main cause behind the enhanced interfacial transparency, which determines the tunable SOT efficiency. Our findings
highlight an attractive scheme to a purely electric control spin configuration, enabling innovative designs for SOT-based spintronics
via interfacial engineering.

KEYWORDS: spin—orbit torque, deterministic magnetization switching, interfacial ion absorption, spin transparency,

canted magnetization

B INTRODUCTION
Spinorbit torque (SOT) enables the electric manipulation of

switching was observed in an epaxial CuPt/CoPt bilayer due
to an interfacial low-symmetry point group.’® In addition, the

the spin configuration for implementing energy-efficient
spintronic integration.' ™ Currently, SOT-driven systems
have been widely explored in many respects, involving
magnetization switching,g’10 domain wall motion,' "> magnetic
oscillation excitation,"”** and so on.">™*° For a SOT-based
storage cell, the key point is to realize field-free SOT-driven
magnetization switching in a heavy metal/ferromagnet (HM/
FM) heterostructure.”” Up to now, it was demonstrated that
SOT-driven magnetization switching can be tuned by an
engineering interfacial or interlayer exchange interaction.”' >
Furthermore, inhomogeneous magnets mainly including a
structure/component gradient have been successfully fabri-
cated to achieve deterministic magnetization switching,**~>’
Especially, symmetry-dependent field-free magnetization
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electric-control method has also been used to manipulate the
SOT efficiency to realize field-free switching.”*"** In general,
an enhanced SOT efliciency results in a low critical current
density. The SOT efficiency per unit of current density (£gyy)
can be characterized as &gy = T, fgy, where Oy is the internal
spin Hall angle (SHA) and T, is the interfacial spin
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Figure 1. (a) Schematic of the Ta/CoFeB/MgO multilayers. (b) Hall loops for the samples with various Ti insertion thicknesses (t;). (c) M, and

K
external field for samples with various fr;.

o as functions of tr;, respectively. (d) SOT-driven magnetization switching loops under +500 Oe. (e) R—I curves under the absence of an

transparency.'”'* Extensive efforts have been paid to exploring
new HM materials with large Oy values to realize the SOT
behavior.***

The Ta/CoFeB/MgO structure is one of the promising
candidates in the area of SOT-based high-density memories
because of its robust perpendicular magnetic anisotropy
(PMA), which is essential to maintaining a large energy
barrier against thermal fluctuation.”® Unfortunately, the
intermixing between Ta and the CoFeB layer during thermal
annealing impedes the transmittance of spin current, which will
greatly degrade Equ.”' Meanwhile, T, has been theoretically
demonstrated to be strongly dependent on the HM/FM
interfacial structure.””** Recently, a submonolayer Ti layer was
used to modify the bulk Pt spin source ([Pt/Ti], multi-
layers).**> However, little experimental evidence for tunable
Ty on field-free SOT-driven magnetization switching has been
found up to now. Here, field-free SOT-driven magnetization
switching and a tunable SOT efliciency can be simultaneously
achieved in perpendicular Ta/CoFeB/MgO multilayers by
introducing atomic-scale Ti layers at the Ta/CoFeB interface.
According to interfacial characterization, together with first-
principles calculations, the above results should be attributed
to the interfacial canted magnetization and enhanced spin
transparency induced by interfacial Ti insertion.

B EXPERIMENTAL METHODS

Multilayers consisting of Ta(5)/Ti(tr;)/CoyoFesBao(1)/MgO(2)/
Cu(1) (in nanometers) were deposited on thermally oxidized Si
wafers at room temperature using a magnetron sputtering system
(AJA, ATC-2200UHV). More details about film growth can be found
elsewhere.'”*° After growth, the films were annealed at 300 °C for 35
min using a vacuum annealing furnace (F800-3S, East Changing
Technologies, China). Subsequently, Hall bar devices were fabricated
by ultraviolet lithography and ion-beam etching for magnetoelectric
transport measurements, and contact pads made of Cr(5)/Au(6S) (in
nanometers) were additionally deposited as electrodes. A Keithley

6221 current source and a 2182A nanovoltmeter were used, where a
direct current was applied. During current-driven magnetization
switching, different pulses with a duration of 200 ps were applied
using the current source. After 10 s, a small direct current (500 yA) as
an excitation current was applied to eliminate the thermal effect, while
a 2182A nanovoltmeter was used to record the Hall voltage at each
point. For harmonic measurements, two SR830 lock-in amplifiers
were employed to record the first- and second-harmonic Hall voltages.
To ensure the accuracy of the experimental results, four samples or
Hall bars were carefully measured during the magnetoelectric-
transport measurement. Energy-dispersive X-ray spectroscopy
(EDS) spectra were obtained using a spherical aberration-corrected
FEI Themis Z microscope. Interfacial states were characterized using
X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi) and a
high-resolution X-ray reflection system (XRR, Bruker D8). The
Dzyaloshinskii—Moriya interaction (DMI) constant was obtained
using Brillouin light scattering (BLS) spectroscopy. Polarized neutron
reflection (PNR) measurements were performed by using the
Multipurpose Reflectometer at the China Spallation Neutron Source.
All density functional theory calculations in this work were performed
by the Vienna Ab Initio Simulation Package (VASP) software.””
When the projector-augmented-wave algorithm was employed, the
electronic exchange-correlation interactions were described using the
generalized gradient agpproximation with the Perdew—Burke—
Ernzerhof functional.**~>°

B RESULTS AND DISCUSSION

Figure la presents a schematic of multilayers under the
orthogonal coordinate system. In this study, a current was
applied through the main channel along the X axis. First, the
anomalous Hall resistance (Ry) was measured in the
multilayers. Figure 1b shows Hall loops for samples with
various Ti thicknesses (fr;). Sharp square loops can be
observed, suggesting good PMA in all samples with various tr;
values. The Ry value is 2.9 Q for the sample without Ti
insertion, and a slight enhancement of Ry can be obtained for
0.1 nm Ti insertion (3.0 Q) and 0.2 nm Ti insertion (3.1 Q).
With further increasing tr;, the Ry value significantly decreases
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(Ry ~ 2.2 Q) due to a shunting effect when tr; is 0.8 nm. In
general, the anomalous Hall effect in FMs originates from
spin—orbit coupling (SOC), leading Ry to be proportional to
saturation magnetization (M,). In addition to M, spin-
dependent scattering at interfaces also plays a crucial role in
tuning Ry in a multilayered structure. Figure lc presents M,
and the effective magnetic anisotropy constant (K.) as
functions of tr;, respectively. It shows a slight change in the
M value with increasing tr;. Meanwhile, the value of K gis 3 X
10° erg/ cm?® for the sample without insertion, and it reaches
3.3 X 10° erg/cm® for the sample with 0.8 nm Ti insertion,
suggesting the same tendency in Kg—tr; curves. To avoid the
joule heating effect, a pulse current was applied to investigate
SOT-driven magnetization switching. Figure 1d presents R—I
loops for Ta/CoFeB/MgO multilayers with assisted magnetic
fields (Hy) of £500 Oe. Full magnetization switching can be
clearly observed under assisted Hy when t1; = 0. The reversal
of the switching polarity takes place when the Hy direction is
changed from the +X to —X axis, consistent with the previous
study.”’ Generally, deterministic magnetization switching
under the absence of Hy is the most attractive for practical
applications of the SOT-based device. Figure le presents field-
free SOT-driven magnetization switching loops for samples
with various tp. As expected, nearly no magnetization
switching can be observed under zero fields in the sample
without Ti insertion. It is worth emphasizing that field-free
magnetization switching can be successfully realized in the
sample with ultrathin Ti insertion (0 < f; < 0.4 nm). With
further increasing tr;, no obvious magnetization switching
behavior can be achieved, indicating various deterministic
magnetization switching behaviors via tr. More details on
SOT-driven magnetization switching can be found in Figure
S1. The minimum critical current density of 2.7 X 107 A/cm?
was obtained in the sample with 0.2 nm Ti insertion (Figure
Sla). Therefore, it is reasonable to conclude that ultrathin Ti
insertion plays an obvious role in SOT-driven magnetization
switching.

In general, SOTs, mainly including damping-like (DL) and
field-like (FL) torques, give rise to magnetization dynam-
ics.>>® Hence, harmonic measurements were performed to
check the spin torques. First, the spin torque from Ti insertion
should be carefully verified. Samples with the structures of
Ti(5)/CoFeB(1)/MgO(2)/Cu(1) (denoted as the Ti/CFB
sample) and Ta(5)/CoFeB(1)/MgO(2)/Cu(1) (denoted as
the Ta/CFB sample) (in nanometers) were prepared. Parts a
and b of Figure 2 show second-harmonic voltage (V,,,) as a
function of H, (parallel) and H, (perpendicular) for the above
two samples, respectively. When H, is swept from +5000 to
—5000 Oe, the V,,—H, loop for the Ta/CFB sample shows a
negative peak, indicating a negative SHA in Ta. The effective
SHA is estimated to be 0.08 in our reference sample Ta/
CoFeB/MgO. Furthermore, the V,, value of the Ti/CFB
sample is far less than that of the Ta/CFB sample shown in
Figure 2. According to the negligible V,, signal, the spin
torque from the Ti layer can be neglected, in good agreement
with the previous study.”* In addition, the ultrathin Ti
insertion (tr; < 1 nm) at the interface cannot generate a
considerable orbital torque, which was confirmed in the recent
study.”” Second, the damping-like (Hp;) and field-like (Hy;)
effective fields should be measured in the samples with various
tr; (Figure S2). Figure 2c displays the damping-like effective
field strength (fp) of both magnetization states (+M and
—M) as a function of ty; for Ta/Ti(tr;)/CoFeB/MgO
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Figure 2. (a and b) V,, as a function of H, (parallel) and H,
(perpendicular) in the current direction for Ta(S nm)/CoFeB/MgO

and Ti(S nm)/CoFeB/MgO multilayers, respectively. (c and d) S,
and fg as a function of ty;, respectively.

multilayers. It shows a nonlinear relationship between fp;
and tr;. For the —M state, when tr; = 0.2 nm, the fp; value of
3.52 X 107% Oe/A-cm™? reaches a maximum value, which is
2.15 times as much as that in the sample without Ti insertion
(1.64 X 107¢ Oe/A-cm™). The tendency is consistent with the
Jow—tr; curve shown in Figure Sla, indicating a maximum
damping-like torque in the sample with 0.2 nm Ti insertion.
Figure 2d presents the thickness dependence of the field-like
effective field strength (fg.). A slight change in the fg value
can be observed with increasing tr;. For example, the S, values
are 1.43 X 107 and 1.49 X 10~° Oe/A-cm™* for the samples
with no and 0.2 nm Ti insertion, respectively. This suggests
that tunable damping-like torque plays a dominant role in the
SOT behavior.

The elemental composition change was characterized by
high-resolution scanning transmission electron microscopy and
EDS (Figure S3). The Mg, Co, Fe, and Ta elements can be
detected; however, the Ti signal is very weak due to the
ultrathin thickness. XPS, together with Ar" ion etching,
provides an effective means to detect relatively few elements
and their depth distribution.”® Mg 1s was selected as a
reference to identify the etching depth (Figure S4). The Mg 1s
peak appears when the Ar* etching time is 10 s. Furthermore,
the intensity significantly decreases for 30 s and then
disappears for 40 s. This indicates that the depth of Ar*
etching extends to the CoFeB layer when the etching time is
beyond 30 s. The samples with no and 0.2 nm Ti insertion
were marked as S—O and S—T, respectively. Parts a and b of
Figure 3 present Ta 4f high-resolution XPS spectra for S—O
and S—T, respectively. For the sample S—O with 10 s Ar"
etching in Figure 3a, peaks 1 and 2 located at 22.1 and 24.0 eV
correspond to Ta 4f;, and 4f;,, in metallic Ta, respectively,
and peaks 3 and 4 located at 26.4 and 28.3 eV correspond to
Ta 4f,, and 4f;;, in Ta,Oj, respectively. It indicates that Ta
diffused into the MgO layer and was oxidized into Ta,Os, in
agreement with the previous study.”” For the sample S—T in
Figure 3b, the Ta 4f peak cannot be observed with an etching
time of 10 s compared with the sample S—O, suggesting that
Ta diffusion was effectively suppressed by inserting a Ti layer.
Parts ¢ and d of Figure 3 present B 1s high-resolution XPS
spectra for the samples S—O and S—T, respectively. For the
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Figure 3. Ta 4f high-resolution XPS spectra for the sample (a)
without insertion and (b) with 0.2 nm Ti insertion, respectively. B 1s
high-resolution XPS spectra for the sample (c) without insertion and
(d) with 0.2 nm Ti insertion, respectively. (e) Ti 2p high-resolution
XPS spectra with an Ar" etching time of 30 s for the sample with 0.2
nm Ti insertion at as-deposited and annealed states, respectively.

sample S—O in Figure 3¢, the B 1s peak appears when the
etching time reaches 10 s, suggesting that the B atom diffuses

into the CoFeB/MgO interface. The B 1s peak disappears with
increasing etching time to 30 s. The peak located at 192.0 eV
shown in Figure 3c corresponds to B** in B,O;. For the sample
S—T in Figure 3d, the B 1s peak appears until the etching time
is up to 30 s. The B 1s peak located at 187.5 eV corresponds to
the B™ state, reflecting a shift of 4.5 eV toward lower binding
energy compared with the sample S—O. In addition, Ti 2p
high-resolution XPS spectra are presented in Figure 3e for the
as-deposited and annealed S—T with an etching time of 30 s,
respectively. For as-deposited S—T, the Ti 2p;,, peak located
at 454.0 eV corresponds to Ti’ in metallic Ti. Obviously, the
Ti 2p;/, peak located at 454.8 eV for the annealed S—T
corresponds to the Ti** state, which shows a shift of 0.8 eV
toward higher binding energy. Therefore, it is reasonable to
conclude that interfacial TiB, is formed by introducing an
ultrathin Ti insertion at the Ta/CoFeB interface.

Parts a and b of Figure 4 show the specular XRR profiles for
the samples without and with 0.2 nm Ti insertion, respectively.
Leptos7 software was used to analyze the XRR data. XRR
curves were fitted using the simplex method to obtain the Ta/
CoFeB interfacial roughness (Tables S1 and S2). For the
sample without insertion in Figure 4a, the interfacial roughness
is 0.11 and 0.38 nm for the as-deposited and annealed states,
respectively. The remarkable increment should be due to Ta
diffusion. For the sample with 0.2 nm Ti insertion in Figure 4b,
the interfacial roughness is 0.19 nm for the as-deposited state,

0.1l nm = 0.38 nm
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Figure S. (a) Optimized atomic configurations of the Ta/CoFe, Ta/Ti/CoFe, and Ta/TiB,/CoFe heterostructure slab models. (b—d)
Corresponding Ap, values of the Ta/CoFe, Ta/Ti/CoFe, and Ta/TiB,/CoFe heterostructure slabs along the z axis. The positive values indicate
electron accumulation, and the negative values indicate electron depletion. (e—g) Spin-up and spin-down PDOSs of Fe and Co in the Ta/CoFe,
Ta/Ti/CoFe, and Ta/TiB,/CoFe heterostructure slabs. The Fermi-energy level is set to zero.

and it significantly decreases to 0.08 nm for the annealed state.
According to the XRR results, this suggests that improvement
of the interfacial structure can be obtained by introducing an
ultrathin Ti insertion. In addition, the SOT behavior can be
remarkably affected by interfacial DML>**’ To quantify the
interfacial DMI constant (D), momentum (k)-resolved BLS
measurements were performed by changing the incident angle
for our samples. The D value can be calculated based on eq 1°°

Af= -2 pk
M (1)

where y and M, are the gyromagnetic ratio and saturated
magnetization of the CoFeB layer, respectively. Af can be
calculated by the interpolation between the Stokes and anti-
Stokes peak locations in the inset of Figure 4c. Figure 4c shows
the Af value as a function of k. The values of D are 0.055 and
0.067 mJ/ m? for samples without and with 0.2 nm Ti insertion,
respectively, indicating a slight enhancement of interfacial DMI
via insertion of the Ti layer. In general, DMI at the HM/FM
interface plays a crucial role in stabilizing the Néel-type
domain walls with certain chirality.61 Enhanced DMI gives rise
to a higher barrier of SOT-driven magnetization switching,
leading to the requirement of larger assisted magnetic fields.””
Therefore, the effect of DMI on SOT-driven magnetization
switching should be excluded. Figure 4d presents the absolute
value of the SOT efficiency (£gyy) as a function of try. gy can
be determined using the following equation:™

2e AH,
S = —HMtr— o
h Je (2)

where t; is the thickness of the ferromagnetic layer. Although
both the M, and K. values slightly change via f1; shown in
Figure 1, this shows the nonlinear change of the &gy value with
increasing tr;. The maximum value of &gy reaches 0.14 in the
sample with 0.2 nm Ti insertion, which is 75% larger than that
of the sample without Ti insertion.

In addition, interfacial electronic interactions at the Ta/
CoFeB interface were investigated to gain insight into the
modified interfacial structure using first-principles calculations.
The model and schematic of the Ta/CoFeB interface are
presented in Figure Sa. When an interfacial Ti layer was
introduced considering the individual Ti and corresponding
TiB, thin-film formation after annealing, the CoFe lattice
distortion was suppressed, indicating good structural stability
and interfacial adaptation. Parts b—d of Figure S show the
planar charge-density differences (Ap,) integrated along the
perpendicular direction of the heterostructures for the three
types of interfaces. Compared with Ap, at the Ta/CoFe
interface (0.027 e/A), significantly higher interfacial electron
accumulations with maximum values of 0.034 and 0.040 e/A
for the interface with Ti and TiB, insertion, respectively, were
obtained. Furthermore, the partial densities of states (PDOSs)
of Fe and Co in the corresponding Ta/CoFe, Ta/Ti/CoFe,
and Ta/TiB,/CoFe interfaces were calculated to identify the
electronic behavior differences near the Fermi surface. As
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depicted in Figure Se—g, the absolute values of the PDOS near
the Fermi energy (E;) level become larger with insertion of Ti
and the TiB, layer, leading to increased concentration of free
conduction electrons and promoting a higher electronic
conduction ability. Notably, enhancement of the spin-down
PDOS of Co and Fe can be found in Figure 5f,g, indicating the
selective excitation of spin polarization at the HM/FM
interface. Therefore, the calcuation results show that enhanced
electron transport and interfacial transparency can be achieved
by introducing atomic Ti and TiB, insertion.

For the HM/FM/oxide trilayered structure, the &gy value
was determined by two components: fgy and T, The Ogy
value has a linear change with the electrical resistivity (p,,),
which can be expressed by the equation®

Oy = (2e/M)ogp,. 3)

In this study, the p,, value in the multilayers monotonously
decreases with increasing tr; (Figure SS). Therefore, the &gy
tendency cannot be explained by the 6y change. Moreover,
the change of Ap, and PDOS demonstrated by the first-
principles calculations results in Figure S reveals enhancement
of the electron conductivity and spin polarization at the
interface, indicating the realization of higher T,,. Our focus
will be on Tj,. According to the interfacial analysis, the B ion
absorption by the Ti layer forms an interfacial TiB, barrier,
which suppresses the Ta and B atom diffusion to determine
low interface roughness. TiB, with a hexagonal AB, structure,
where B atoms can form strongly bonded graphene-like sheets
between layers of metal atoms, was reported. The structure has
good electrical conductivity as well as chemical and thermal
stability.>~®” In addition, as depicted in Figure 4d, an ultrathin
Ti insertion can significantly improve the SOT efficiency,
suggesting the positive effect of an improved interfacial
structure on Ty, Furthermore, it was demonstrated theoret-
ically that T;,, can be affected by two factors: (1) spin backflow
(SBF), whose strength depends on the spin-mixing con-
ductance G of the interface relative to the spin conductance
Gy of the HM layer;* (2) spin memory loss (SML), which is
caused by the interfacial spin scattering.43 On the one hand,
SML is induced by the loss of spin information due to the spin-
flip scattering, resulting in the spin angular momentum carried
by the spin current that cannot be transferred to FM.®® For the
sample with Ti insertion, the interfacial spin scattering can be
decreased due to the improved Ta/CoFeB interface with
various Ti insertions, resulting in a decreased SML. On the
other hand, a clear interface with good crystal perfection is
found to be one of the important factors for G'.°” In this
study, formation of the TiB, barrier leads to the clearer Ta/
CoFeB interface, which gives rise to the enhancement of G
and the decreased SBF. Therefore, B ion desorption by the Ti
layer is a benefit of the improvement of the interfacial
structure, leading to a tunable SOT switching behavior.

To further investigate the effect of B desorption by the Ti
layer on the magnetic properties, PNR measurements were
performed to characterize the depth distribution of the
magnetic structure. In general, the tilted angle of the
magnetizations can be quantitatively calibrated to confirm
the spin orientation. According to the PNR result in Figure S6,
the magnetic parameters are summarized in Table 1. The
values of in-plane magnetization (M;) for the multilayers with
no and 0.2 nm Ti insertion are 1.095 and 1.123 uy under
12000 Oe, respectively. When the in-plane field is decreased to
20 Oe, the values of M are decreased to +0.013 and —0.042 5,

Table 1. In-Plane Component of Magnetizations (y) under
Various Magnetic Fields

Ta/Ti(tr;)/CoFeB/MgO 12000 Oe 20 Oe canted angle (deg)
M, tz; = 0 nm 1095 0.013 0.7
My, tr; = 0.2 nm 1.123 ~0.042 -2.1

for the sample with no and 0.2 nm Ti insertion, respectively.
The canted angle of 0.7° is very low for the multilayers without
Ti insertion, indicating typical perpendicular magnetization in
conventional Ta/CoFeB/MgO multilayers. In contrast, it
increases to —2.1° when a 0.2 nm Ti layer is inserted at the
interface, confirming the existence of canted magnetization in
the multilayers with ultrathin Ti insertion. Generally, the tilted
angle of magnetization is dependent on the competition of
various energies (such as interfacial magnetization anisotropy,
bulk magnetization anisotropy, DMI, and so on). The
difference is that a slight change of the K. value in Ta/
CoFeB/MgO multilayers originates from orbital hybridization
at the CoFeB/MgO interface.*® In addition, it should be noted
that oblique sputtering was used during the Ti insertion
deposition in spite of rotation of the substrate, which means
that the lateral inhomogeneity might be inevitably induced
when the Ti insertion is relatively thin. Therefore, the field-free
magnetization switching should be attributed to the canted
magnetization induced by ultrathin Ti insertion.

B CONCLUSION

In summary, SOT-driven magnetization switching in perpen-
dicular Ta/CoFeB/MgO multilayers with atomic-scale Ti
insertion was systematically investigated. Field-free magnet-
ization switching with J, of 2.7 X 107 A/cm® can be
successfully achieved in the heterostructure with 0.2 nm Ti
insertion. In addition, the SOT efficiency can be effectively
tuned by various interfacial insertions. According to the PNR
results, the enhanced interfacial canted magnetization is
verified in the multilayered structure by introducing the
ultrathin Ti insertion, leading to deterministic magnetization
switching. Interfacial structural characterization, together with
the first-principles calculations, confirms the Ti layer, acting as
a B ion absorption source (TiB, barrier), results in enhanced
interfacial transparency, which facilitates the tunable SOT
efficiency. Our findings deliver an effective method to design
high-performance SOT-based devices and deeply understand
the mechanism of electric control spin via interfacial
modification.
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