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Abstract Solid state refrigeration based on caloric effect
is regarded as a potential candidate for replacing vapor-
compression refrigeration. Numerous methods have been
proposed to optimize the refrigeration properties of caloric
materials, of which single field tuning as a relatively
simple way has been systemically studied. However,
single field tuning with few tunable parameters usually
obtains an excellent performance in one specific aspect at
the cost of worsening the performance in other aspects,
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like attaining a large caloric effect with narrowing the
transition temperature range and introducing hysteresis.
Because of the shortcomings of the caloric effect driven by
a single field, multifield tuning on multicaloric materials
that have a coupling between different ferro-orders came
into view. This review mainly focuses on recent studies
that apply this method to improve the cooling performance
of materials, consisting of enlarging caloric effects,
reducing  hysteresis  losses, adjusting  transition
temperatures, and widening transition temperature spans,
which indicate that further progress can be made in the
application of this method. Furthermore, research on the
sign of lattice and spin contributions to the magnetocaloric
effect found new phonon evolution mechanisms, calling
for more attention on multicaloric effects. Other progress
including improving cyclability of FeRh alloys by
introducing second phases and realizing a large reversible
barocaloric effect by hybridizing carbon chains and
inorganic groups is described in brief.

Keywords phase transition regulation, caloric effect,
solid state refrigeration

1 Introduction

Nowadays, relying on the advantage of high specific
cooling power (SCP), vapor compression refrigeration is
used in most commercial cooling machines like air-
conditioners. However, with the use of chemical
refrigerants and low cooling efficiency causing large
carbon dioxide emissions, this technique worsens the
greenhouse effect. The fast development of the economy
and the explosion of population bring up urgent needs for
more environmentally friendly and more efficient
refrigeration prototypes.

Fortunately, the potential solid-state refrigeration
technique based on caloric effects including the
magnetocaloric effects [1-10], the electrocaloric effects
[11-17], the elastocaloric effects [18-21], and the
barocaloric [22-33] effects induced by magnet fields,
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electric fields, uniaxial stresses, and hydrostatic pressures
respectively, seems to be the redeemer. Caloric effects
are defined as isothermal entropy changes or adiabatic
temperature changes during the phase transition process
triggered by an external field. The chemical refrigerant
independence, the high working efficiency, the
possibility of minimization, and the noiseless working
cycle make caloric effects promising candidates for
alternating vapor compression refrigeration. A great deal
of effort has been devoted to this field to pursue excellent
performances: large entropy changes, low hysteresis
losses, wide transition temperature spans, and a good
cyclability.

Up to the present, most studies have been concentrated
on the caloric effect driven by a single field, leading to
the competition of pursuing caloric materials with high
isothermal entropy changes. Many first-order materials
featuring magnetostructural/magnetoelastic  transition
have been discovered showing large entropy changes,
such as GdsSi,Ge; [34,35], FeRh [36,37], and La(Fe,Si);3
[38], but it is at the cost of sacrificing low hysteresis
losses, wide transition temperature spans, and good
cyclability [39—48]. To make the best of both worlds, an
extra tool, multifield tuning heaves in sight [49].
Correspondingly, the multiferroic material is the one
possessing more than one ferroic order, thus replying to
different fields. One ferroic order can be changed by
various fields if it is strongly coupled to another ferroic
order. Consequently, caloric effects could be influenced
by each other because of the couple between ferroic
orders. Therefore, it is feasible to realize unprecedented
performance based on this principle.

In this review, first, the sign of lattice and spin
contribution in the magnetostructural transition will be
discussed. Then, applying multifield tuning, the improve-
ment to the magnitude of caloric effects, the decrease of
hysteresis, the wideness of transition temperature spans,
and the coupled caloric effect will be demonstrated in
order. Finally, the promotion of cyclability and large
reversible barocaloric effects will be shown.

2 Multifield tuning

2.1 Sign of lattice and spin contributions during a
magnetostructural/magnetoelastic transition

For giant magnetocaloric materials, along with the
magnetic phase transition, the lattice parameter and/or the
crystal symmetry also discontinuously transform, i.e., a
first-order transition. For a transition from the
ferromagnetic (FM) to the paramagnetic (PM) phase, if
the lattice expands, it is well known that both the lattice
and the spin entropy increase like Gds(SiGei_)4 [34,50]
with a lattice expansion AV/V about +(0.4—1.0)%. On the
contrary, arousing controversy, it is ambiguous whether
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the sign of entropy changes is the same or not for the
negative lattice expansion, for instance, La(Fe,Si);3-based
compounds with a lattice contraction AV/V about
—(1.2-1.6)% [3,38,51], MnAs-based with AV/V about
—(1.1-2.1)% [42,52], and MnCoGe/MnNiGe-based with
AVIV about —(2.8-3.9)% [53-56] during the magnetos-
tructural or magnetoelastic transition. It is acknowledged
that the spin entropy in the PM phase is larger than that in
the FM phase and usually the phase with a larger lattice
parameter should possess a larger lattice entropy.
Therefore, the magnetic field drives the transition from
the PM phase to the FM phase, enlarging the lattice
entropy and lowering the spin entropy. For instance, the
investigation on MnAs conducted by density functional
theory (DFT) indicates that the sign of the spin entropy
change should be different from that of the lattice [57],
but no experiment has been conducted to prove it up to
the present. Jia et al. once reported that the smaller
positive phonon entropy change was covered by the
larger negative spin entropy change, thus leading to a
totally negative entropy change in La(Fe,Si)i3-based
magnetic materials [58]. But, surprisingly, employing
nuclear resonant inelastic X-ray scattering (NRIXS), the
research done by Landers et al. showed that the
magnitude of the Fe-partial lattice entropy change of
about 6.9 (= 2.6) J/(kg'K) was about 49% of the total
entropy change 14.2 J/(kg-K) obtained for LaFe;; ¢Si; 4 at
a 0—1 T magnetic field using Maxwell relation, and the
sign was the same as the total entropy change [59,60].
Luckily, since the separation and the couple of the
magnetic and structural transition of MnCoGe and
MnNiGe alloys can be controlled by pressure or doping,
studies have confirmed that the sign of lattice and spin
contribution is the same [55,56,61].

In the 1970s, Johnson [55], and Anzai & Ozawa [56]
respectively investigated transitions of MnCoGe and
MnNiGe, and found that there was a separate magnetic
transition from the FM/antiferromagnetic (AFM) phase to
the PM phase and a structural transition with a lattice
contraction AV/V about —(1.6-3.9)% upon heating
(Fig. 1(a)). By utilizing differential scanning calorimetry
(DSC) or differential thermal analysis (DTA) to monitor
the heat flow during either the heating or the cooling
process, the direction of different peaks is demonstrated
to be the same (Figs. 1(b), 1(d)). Moreover, Anzai and
Ozawa [56] revealed that the two transitions evolved into
one transition with pressure increasing, further proving
that the lattice entropy decreased in the magnetostructural
transition upon cooling with lattice expanding (Fig. 1(d)).
Substituting Ge with Al, Bao et al. [61] studied the
properties of the magnetostructural transition in
MnCoGe;_,Al,. Since Al stabilizes the hexagonal
structural phase and shifts the structural transition to
lower temperatures, it can control the relative position of
the two peaks. For x = 0.01, 0.02, it realizes a
magnetostructural transition while for x = 0.03, it
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Fig. 1 Clarification of the sign of the lattice and spin contribution to the entropy change.

(a) Change of the lattice volume of MnCoGe alloys during phase transition [55] (adapted with permission from Ref. [55], Copyright 1975,
American Chemical Society); (b) heat flux peaks recorded by DSC for MnCoGe and MnNiGe alloys [55] (adapted with permission from
Ref. [55], Copyright 1975, American Chemical Society); (c) heat flux upon heating recorded by DSC and the entropy calculated by the
heat flux as a function of temperature for MnCoGey 97Alp 03 alloys [65] (reprinted with permission from Ref. [65], Copyright 2020,
Elsevier); (d) heat flux curves at different pressures for MnNiGe alloys recorded by DTA [56] (reprinted with permission from Ref. [56],
Copyright 1978, American Physical Society); (e) Fe-partial VDOS of LaFe;; ¢Si; 4 powder with a transition temperature of about 192 K
obtained from >’Fe (accounting for 10% of the total Fe) NRIXS measured at different temperatures in the magnetic field of 0.7 T [60]
(reprinted with permission from Ref. [60], Copyright 2018, American Physical Society); (f) vibrational entropy of Fe sublattice computed
by Fe-partial VODS of LaFe;; ¢Si; 4 powder [60] (reprinted with permission from Ref. [60], Copyright 2018, American Physical Society);
(g) Debye temperature calculated from Lamb-Mossbauer factor fiy based on Fe-partial VDOS data for LaFe;; ¢Sij4 compounds [60]
(reprinted with permission from Ref. [60], Copyright 2018, American Physical Society); (h) variation of Debye temperature with the
change of temperature for La(Fep92Co0008)11.9511.1 compounds computed by Debye approximation without introducing pressure [64]
(reprinted with permission from Ref. [64], Copyright 2020, American Chemical Society).

separates again. Upon heating, the heat flow
measurement shows that the lattice entropy increases
with the lattice contracting for x = 0.03, verifying that the
sign of lattice entropy changes does nothing with the
relative position of the two peaks. Therefore, the
sameness of the sign of spin and lattice entropy changes
is further proved (Fig. 1(c)).

The direct experimental proof was shown by Landers
et al. to testify that the sign of spin and lattice entropy
changes of La(Fe,Si);; was the same [59,60]. The
vibration density of states (VDOS) in LaFej;¢Sija
around the phase transition temperature was measured,
indicating that a phonon peak around 27 meV
disappeared upon heating which meant that the phonon
softened, leading to an entropy increase (Fig. le).
Applying the thermodynamic relation

© E

S1aa(T) = 31ch0 g(E) [% —1n(e‘% - e)} dE,
(1)

where St 1s the lattice entropy, T is temperature, kg is
Boltzmann constant, g(E) is the density of states, E is the

energy of state, and S equals [Akg7). The results
calculated by VDOS data expressed that the increase of
Fe-partial entropy was 6.9(+ 2.6) J/(kg-K) during lattice
contraction (Fig. 1(f)), contributing cooperatively about
49% to the total entropy change 14.2 J/(kg-K) obtained
by using Maxwell relation for LaFe;;¢Sij4 at a 0-1 T
magnetic field. This result was also verified by their DFT
calculation results. Moreover, Debye temperature
calculated by Lamb-Mossbauer factor fiy expressed a
drop by about 4% from 363 K to 348 K upon heating

(Fig. 1(g)). With Eq. (2) [62,63]
0/T x3
L e —1 d,
(2

3
_ﬁ)] ¥ 12NkB(Z)
T 0

where N is Avogadro constant, and 6 is Debye
temperature. A rise in the lattice entropy is indicated by
the decrease in Debye temperature. The study conducted
by Hao et al. on La(Fe9:Co0,05)Si;.; suggested that there
was a drop of Debye temperature by about 3% during the
transition from the FM phase to the PM phase (Fig. 1(h))
[64], thus evidencing that the sign of lattice and spin

S vt = 3Nks ln[l —exp(



466 Front. Energy 2023, 17(4): 463-477

entropy changes was the same in La(Fe,Si);3-based
compounds [64]. The sign problem still needs further
investigation in more materials to obtain a convincingly
general conclusion.

2.2 Amplitude

There are variant kinds of multicaloric materials,
consisting of electric-structural, electric-magnetic, and
magnetic-structural ~ couplings.  Herein,  magnetic-
structural coupling materials, i.e., materials with a
magnetostructural/magnetoelastic  transition will be
concentrated on. For the entropy change during this
transition, lattice (ASp) and spin (ASy) entropy changes
play the most important part, considering the fact that the
contribution of electronic entropy is generally neglectable
at high temperatures. Theoretically, the maximum ASy,
RIn(2/+1) where J is the total angular momentum
quantum number, imposes restrictions on spin entropy
changes and ASp reflects the internal entropy change
which can be partially implied by lattice volume changes.
Therefore, enlarging ASp is an effective path to
enhancing caloric effects [66]. Nonetheless, applying
distinct magnitude of magnetic fields, ASy cannot be
enhanced for general magnetocaloric materials with a
magnetostructural transition, such as GdsSi,Ge, whose
ASt, decreases from 10.6 J/(kg-K) to 9.2 J/(kg-K) while
the magnetic field (H) increases from 0-2 T to 0-10 T
and GdsSi; 09Gejo; with a ASp of 9.2 (£ 0.2) J/(kg-'K)
nearly unchanged while an H changing from 0-2 T to
0-5 T [66-68].

Hao et al. reported that with the employed pressure
influencing spin fluctuations and specific Fe-Fe bonds,
the negative volume expansion was increased and the
magnetoelastic transition was sharpened, hence increas-
ing the entropy change to 1.8 times at a magnetic field
change of 05 T with a pressure of 11.31 kbar applied as
large as that under 0 kbar for La(Fe92C00.08)11.951; 1
[64]. However, the mechanism mentioned above
strengthens the first-order nature and introduces more
hysteresis losses. Therefore, Hao et al. found another
mechanism in HoCuSi compounds. With the physical
pressure impacting the distance between Ho atoms and
lattice parameters, crystal field interactions and magnetic
exchange interactions were influenced. The AFM ground
state with a sine wave modulated spin structure was
changed in HoCuSi. Although the exact spin structure
driven by pressure was unknown, the magnetization
process became easily saturated and the effective
magnetic moment was slightly enhanced. As a result, the
entropy change was enhanced by 150% at a low magnetic
field change of 0-1 T without adding additional
hysteresis losses [69].

For La(Fe 92Co.08)11.9511,1 compounds, as the pressure
increases, the transition temperature decreases (d7¢/dP =
—7 K/kbar), and the transition becomes sharper: the full

width at half maximum (FWHM) is lowered from 23.1 K
to 6.7 K and the peak of dM/dT rises from 3.8 to
16.3 A-m?/(kg-K) with the pressure applied rising from
0 to 11.31 kbar [64] (Fig. 2(a)). The Arrott plots show
that with physical pressure increasing from 0 to
11.31 kbar, the transition generally evolved from a
second order to a first order, introducing hysteresis
(Fig. 2b). Figure 2(e) reveals that the total entropy change
was improved by 0.8 times higher from 14.1 to about
26.0 J/(kg'K) at a field change of 0-5 T with the applied
pressure rising from 0 to 11.31 kbar. Employing variable
temperature neutron powder diffraction (NPD) at
different pressures, the volume and parameters of the
lattice were determined (Figs. 2(c), 2(d), 2(f)). The
negative volume expansion was enhanced from —1.08%
to —1.57% when the pressure was applied up to 9 kbar
while correspondingly, the amplitude of the shrinkage of
the intra-icosahedron Fe—Fe bonds B1, B2, and B3
simultaneously increased with the symmetry of the
icosahedron almost unchanged under pressure. This can
be attributed to the magnetoelastic softening, though the
lattice volume contracts. The PM phase is more sensitive
to pressure than the FM phase, leading to a boost in the
negative lattice expansion. To conclude, the applied
pressure enlarges volume changes, increasing lattice
entropy changes (ASt). Therefore, it results in an obvious
boost of magnetocaloric effects by multifield tuning. The
total entropy change of the magnetocaloric effect is
almost doubled at a pressure of 11.31 kbar with the H
changing from 0 to 5 T (Fig. 2(e)). The first-principles
calculations were performed, which offered theoretical
support for the enlarged caloric effects related to the
evolution of phase transition nature. Moreover, the
enhanced lattice entropy change was calculated by Debye
approximation and a reliable way to evaluate barocaloric
effect at a high pressure that DSC cannot reach was
demonstrated [64].

Former research indicated that the Neel temperature of
HoCuSi is about 9 K, below which it shows an AFM
ground state where Ho?' ions form a sin wave modu-
lation spin structure possessing a propagation vector k =
(1/15, 0, 1/6) [70]. With powder X-ray diffraction (XRD)
exploring the crystal structure, Fig.3(a) gives the
Rietveld refined XRD pattern which shows that the
sample possesses a NiyIn-type hexagonal structure with a
space group P6s3/mmc at room temperature. Figure 3(b)
suggests that pressure favored the FM interaction. There-
fore, the PM Curie temperature rose from 3.6 to 8.2 K
and the effective moment M. rose from 10.07 up/Ho3"
to about 10.59 pp/Ho3* with pressure increasing from
0 to 9 kbar [69]. Figures 3(c)-3(e) implie that the sample
at a higher pressure possesses a lower critical field
triggering the transition from the AFM phase to the FM
phase and there is no hysteresis no matter what pressure
is applied. The reduced distance between Ho atoms by
applying physical pressure may increase FM couplings
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Fig. 2 Amplitude tuned by multifield for La(Fep92Co00.08)11.9S11.1 compounds.

(a) dM/dT-T curves in the magnetic field 1 T at different pressures where the inset denotes FWHMs at different pressures (reprinted with
permission from Ref. [64], Copyright 2020, American Chemical Society); (b) corresponding Arrott plots (reprinted with permission from
Ref. [64], Copyright 2020, American Chemical Society); (c¢) two-dimension diagram of the partial lattice structure of La(Fe,Si)3
compounds (reprinted with permission from Ref. [64], Copyright 2020, American Chemical Society); (d) changes of intra-icosahedron Fe-
Fe bonds B1, B2, and B3 with the variation of temperature at different pressures (reprinted with permission from Ref. [64], Copyright
2020, American Chemical Society); (¢) applied variant pressure, the temperature dependence of the isothermal entropy change with the
magnetic field changing from 0 to 2 T/5 T (reprinted with permission from Ref. [64], Copyright 2020, American Chemical Society);
(f) lattice volume [64] (reprinted with permission from Ref. [64], Copyright 2020, American Chemical Society).

(magnetic exchange interactions) and alter crystal field
interactions, thus impacting the non-collinear sin wave
modulated spin structure and obtaining a higher M.
Consequently, the magnetization process is altered, and
the entropy change can be enhanced by 150% from 4.8 to
12 J/(kg-K) at a low magnetic field of 1 T by introducing
a hydrostatic pressure of 6.6 kbar (Fig.3 (b)). This
mechanism does not introduce hysteresis (Figs. 3(c)-

3(e)).
2.3 Temperature transition span

Since the discovery of first-order transition materials with
giant caloric effects, like GdsSiyGe, [34,35], FeRh
[36,37], La(Fe,Si);3 [38,41], and MnAs [42,52], they
have drawn much attention [18,22,71-75]. Compared to
the traditional caloric material Gd with a second order
transition, they have unprecedented large entropy
changes but the sharp transition in these materials
generally leads to a narrow transition temperature span
which limits their practical applications [2]. Variant
methods have been tried to solve this problem on bulk
materials, consisting of nanostructuring, introducing
chemical pressure, and applying hydrostatic and uniaxial
pressure, acquiring progress to some extent [3,41,76—79].
Recently, Qiao et al. applied multifield to broaden the
temperature range of FeRh films, proposing a novel

method for tailoring the transition temperature span [80].
Previous studies indicated that the transition from the
AFM phase to the FM phase in FeRh alloys with the
cubic structure upon heating is a first-order transition
together with a volume expansion of about 1%.
Therefore, this transition can be driven by either
magnetic fields or stresses [36,37]. Grown on the (001)
direction of relaxor ferroelectric single crystals 0.7Pb
(Mg1/3Nby3)03-0.3PbTiO; (PMN-PT), spontaneously
polarizing along the 8 orientations of rhombohedral body
diagonals (Fig. 4(a)), the (011) orientational FeRh film
could be impacted by strains induced by the mismatch
which was buffered by the formation of AB,O4 spinel
layers. Obeying the principle of minimum energy, the
energy of distortions and strains would be reduced by the
variation of FeRh lattices. The multidomain characte-
ristics of the PMN-PT substrate led to the domain
division of the FeRh film, as exhibited in Fig. 4(b).
Domain A and domain B bore different strains, the phase
transition temperature of which appeared at different
positions. Since compression stabilizes the AFM phase
and stretching stabilizes the FM phase, domain A with
compressive strains and B with tensile strains caused a
two-step phase transition either in the heating or the
cooling process (Fig. 4(c)). When the electric field of
+ 8 kV/cm was applied along the [001] direction of the
PMN-PT substrate, the 109° domain switching boosted
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Fig. 3 Amplitude tuned by multifield for HoCuSi compounds.

(a) Room temperature Rietveld refined XRD diagram where the inset shows the lattice structure (reprinted with permission from Ref. [69],
Copyright 2020, Elsevier); (b) isothermal entropy change as a function of temperature at the 0—1 T magnetic field at different pressures
(reprinted with permission from Ref. [69], Copyright 2020, Elsevier); (c) M-H curves at a pressure of 0 kbar (reprinted with permission
from Ref. [69], Copyright 2020, Elsevier); (d) M-H curves at a pressure of 6.60 kbar; (e) M-H curves at a pressure of 8.97 kbar [69]

(reprinted with permission from Ref. [69], Copyright 2020, Elsevier).

the ratio of domain A, enlarging the peak of domain A
while for —8 kV/cm, besides 109° transforming the same
as that under the positive field, the 71°/180° domain swi-
tching introduced large compressive strains (Fig. 4(d)).
Therefore, the peak of domain A was enlarged and the
transition temperature of domain B was lifted, leading to
an emergence of two peaks (inset of Fig. 4(c)). With
electric fields tuning the transition temperature, the
cooling temperature span would be dynamically
broadened to 60 K (Fig.4(e)). Employing suitable
multifield tuning, this widened cooling temperature span
can be used in cooling devices [80].

2.4 Hysteresis

Besides the narrow transition temperature span, another
obstacle to the application of caloric materials with a
first-order transition is hysteresis. Hysteresis losses refer
to the meaningless energy losses induced by the internal
properties of materials instead of energy consumed by an
actuating system which can be reduced or even
eliminated by subtle mechanism designs. Therefore, it is
a straightforward way to raise the working efficiency of a

prototype by decreasing hysteresis losses. To put
materials with a first-order transition into use, researchers
have attempted to minimize hysteresis losses by doping,
introducing porosity or hydrostatic pressure [72,81,82],
of which the most successful one is the Heusler alloys
NiMnColn tuned by multifield (magnetic fields and
hydrostatic pressure) [72]. In addition, Qiao et al. showed
that the hysteresis loss of FeRh films could be
minimized, even reversed by the cooperation of electric
and magnetic fields [73] for the FeRh films grown on
PMN-PT substrates, which filled the blank of the film
tuning aiming at reducing hysteresis.

The FeRh film was grown on the PMN-PT single
crystal substrate with the (011) orientation. A magnetic
field drives a transition from the AFM phase to the FM
phase with a lattice volume expansion of about 1% [36].
Applying a negative electric field on PMN-PT substrates
would introduce compressive strains which stabilize the
AFM phase, decreasing magnetization. The memory
effect in PMN-PT substrates prevented the strain from
disappearing unless a positive electric field was
employed to drive it back to the original state and the
memory effect again kept it unchanged with the positive
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Fig. 4 Temperature transition range tuned by multifield for FeRh(011)/PMN-PT (001) heterojunction.

(a) Schematic of the 8 spontaneous polarization vectors for (001)-oriented PMN-PT single crystals (reprinted with permission from Ref.
[80], Copyright 2020, Elsevier); (b) projections of ferroelectric domains and corresponding FM domains of FeRh in the (001) plane of the
PMN-PT, i.e., the (011) plane of FeRh (reprinted with permission from Ref. [80], Copyright 2020, Elsevier); (c) change of magnetization
with variation of temperature measured at a 3 T magnetic field with in situ electric fields of 0, +8 and —8 kV/cm (reprinted with
permission from Ref. [80], Copyright 2020, Elsevier); (d) electric field dependence of lattice parameter along the [001] direction of PMN-
PT (reprinted with permission from Ref. [80], Copyright 2020, Elsevier); (e) temperature dependence of isothermal entropy change in
different electric fields [80] (reprinted with permission from Ref. [80], Copyright 2020, Elsevier).

field removed. As a result, the magnetization curve a—b
was replaced by the curve c—d (Fig. 5(b)), with a pulse
electric field applied only at both ends of magnetic fields
(0, H) rather than the magnetization/demagnetization
process, leading to a decrease in hysteresis losses
(Figs. 5(a)-5(b)). Because the domain switching of PMN-
PT substrate cannot provide enough memorable
compressive strains, the irreversible rhombohedral-to-
orthorhombic (R-O) phase transition was taken advantage
of to produce compressive strains as much as —0.45%
along the in-plane [100] direction [73]. The M-E loop and
XRD patterns at room temperature proved that there
indeed existed the strain memory effect during the phase
transition (Figs. 5(c) and 5(e)). Compared to Fig. 5(f)
which expresses a magnetization curve without the
participation of the electric field, Fig. 5(g) gives the case
with the electric field applied. With the pulse electric
field £6 kV/cm applied at 0 and 5 T magnetic fields at
320 K, the measured hysteresis loss was reduced by 58%
with an in-plane strain of —0.20%. Furthermore, with a
larger pulse electric field, the hysteresis loss is expected
to be eliminated when the introduced compressive strain

reaches up to —0.35%, even reversed (strain over —0.35%).
All in all, different from the mechanism used before, the
decrease of hysteresis in FeRh films is due to the
conversion of electric energy, i.e., whether the working
efficiency can be improved depends on conversion
efficiency, and the internal properties of materials are not
changed at all. But hopefully, this work opens a new path
for promoting SCP by applying multifield.

2.5 Coupled-caloric effect

Based on the theory of thermodynamics, multicaloric and
coupled-caloric effects can be expressed by the
isothermal entropy change with Eq. (3) [49]

s [ Oy,

AS[T,(0,0) = (x1,x)] =j0 (a_T)dx

= (Oy,
+L (6_T)x|=0,x2dx2

X1 X2 axl2
+f0 fo “Fdndn. ()
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Fig. 5 Hysteresis tuned by multifield for FeRh/PMN-PT (011) heterojunction.

(a) Schematic of the working principle of refrigeration (reprinted with permission from Ref. [73], Copyright 2019, Elsevier);
(b) corresponding M-H curves in which the pulse electric field is applied at both ends of the magnetic field 0, H (reprinted with permission
from Ref. [73], Copyright 2019, Elsevier); (c) room temperature XRD pattern of the PMN-PT with electric fields in situ applied in the
sequence of +0, —6, —0, +6, and +0 kV/cm (reprinted with permission from Ref. [73], Copyright 2019, Elsevier); (d) schematic of the
heterostructure with magnetic and pulse electric fields (reprinted with permission from Ref. [73], Copyright 2019, Elsevier);
(e) magnetization at 310 K in the magnetic field 5 T as a function of electric field (reprinted with permission from Ref. [73], Copyright
2019, Elsevier); (f) M-H curves (reprinted with permission from Ref. [73], Copyright 2019, Elsevier); (g) M-H curves with the application
of a pulse electric field at 0, 5 T where curves 5 and 6 denote the application of the pulse electric field 6 kV/cm and others denote
predicted process with larger pulse fields (reprinted with permission from Ref. [73], Copyright 2019, Elsevier); (h) schematic of the time
sequence of the application of pulse electric and magnetic fields [73] (reprinted with permission from Ref. [73], Copyright 2019, Elsevier).

where the summation denotes the multicaloric effect, the
first and second items on the right of the equation denote
single caloric effects, the last one denotes the coupled-
caloric effect, y; denotes ferroic order parameters, x;
denotes the conjugated fields, and 7 denotes temperature
(more details can be seen in Ref. [49]). By now, a large
part of studies about the coupled-caloric effect have been
concentrated on the cooperation between hydrostatic
pressure and magnetic/electric fields while a few focused
on the union of electric and magnetic fields.

FeqoRhs; alloys undergo a transition from the AFM
phase to the FM phase together with a volume expansion
of about 1%. Therefore, it is possible to study the
coupled-caloric effect on this material [83,84]. Stern-
Taulats et al. surveyed the M-P curves of FesqRhs; and
further calculated isothermal entropy changes based on
magnetic measurements under pressure [83] (Fig. 6(a)).
To optimize the performance of caloric effects, the

applied magnetic field and pressure were in opposite
directions, amazingly attaining a wide transition tempera-
ture span of about 50 K by the coupled-caloric effect.
Besides, the fields applied in the same direction, which
caused the competition between the inverse magneto-
caloric effect and the normal barocaloric effect, were also
investigated (Fig. 6(b)). With the magnitude of the
magnetic field applied increasing from 0 to 5 T, the
inverse magnetocaloric effect generally dominated the
process and the transition temperature moved to lower
temperatures because magnetic fields favored the FM
phase while pressure did the other. Thus, by the function
of the coupled-caloric effect, the transition temperature
and the sign of entropy change can be controlled,
providing convenience for optimizing the performance of
caloric effects. However, the principle causing coupled-
caloric effects is not discussed in this work, calling for
deeper research.
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Fig. 6 Coupled-caloric effects.

(a) Various isothermal entropy changes as a function of temperature of the process applying a field 2 T or removing pressure 5 kbar for
FeRh alloys [83] (reprinted with permission from Ref. [83], Copyright 2017, American Physical Society); (b) multicaloric isothermal
entropy change as a function of temperature of the process applying the magnetic field and pressure of different magnitude [83] (reprinted
with permission from Ref. [83], Copyright 2017, American Physical Society); (c) temperature dependence of the magnetic volume
coupling coefficient y;,at a magnetic field 5 T at different pressures for NisoMnj3sIn;s [86]; (d) temperature dependence of the coupling
isothermal entropy change with the field change from 5 to 0 T at different pressures for NisoMnssln;s [86]; (e) comparison of the total
entropy change obtained by the adjustment of the coupling isothermal entropy change on the isothermal magnetocaloric entropy change in
ambient pressure (black) and the isothermal magnetocaloric entropy change at selected pressure computed by Maxwell relation (red) [86].

Upon cooling, Heusler alloys Ni;Mn;:M;_, (M = Ga,
Sn and In, 0 < x < 1) undergo a transition from the
PM austenitic phase to the FM austenitic phase then
to the AFM martensitic phase [84]. Since the AFM
phase possesses a smaller lattice volume than the FM
phase, hydrostatic pressure favors the AFM phase by
boosting the AFM exchange interaction between Mn
atoms by reducing the distance between them [85]. Thus,

NipMn;+,M;_, is an ideal material to study coupled-
caloric effects [86]. Figure 6(c) presents the magnetic
volume coupling coefficient y,, calculated by M-P curves
measured at variant temperatures. By integrating y,,, the
coupled-caloric effect was attained which exhibited two
separated peaks (Fig. 6(d)). By comparing the isothermal
entropy change calculated by the two methods, the
equivalence between the magnetocaloric effect at a
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certain pressure and the addition of the magnetocaloric
effect at ambient pressure and the relevant coupled
caloric effect were further proved (Fig. 6(e)). Corpora-
tely, the negative and positive peaks pushed the total
entropy change peak to a higher temperature of about 294
K (about 30 K higher) and a larger value of 25.7 J/(kg-K)
(which is enhanced by 8%) with the applied pressure
increasing from zero to 9.95 kbar at a magnetic field
changing from 5 to 0 T. Hence, the magnitude of the
entropy change and the transition temperature can be
adjusted by the coupled-caloric effect. However, deep
mechanisms have not been revealed yet [49].

2.6  Other progress

Caloric materials with a larger SCP (SCP = CAT,4f,
where C is specific heat capacity, AT,q is the adiabatic

Front. Energy 2023, 17(4): 463-477

temperature change of material, and f'is the frequency of
alternating magnetic fields) driven by low fields are what
researchers pursue. In addition, the reversibility of caloric
effects during cooling circulations is also important. Qiao
et al. reported that by introducing second phases, FeRh
alloys had an improved adiabatic temperature change
ATyq of about 0.48 K, 70% larger than monophase FeRh
under a low magnetic field of 0.62 T with an alternating
frequency of 1 Hz, and the cycling stability was elevated
[87]. XRD patterns revealed that except the @-FeRh
phase, there existed the second phases containing 4.6%
a-Fe and 2.4% y-FeRh phases (Fig. 7(a)). Lorentz TEM
images indicated that in the low-temperature AFM phase,
there were small FM domains which were formed by the
dominant phase, the a-FeRh phase (Fig.7(b)). The
adiabatic temperature change AT,y of about 4.8 K
decreased by 14% to 4.1 K after long cycles in the 1.8 T,
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Fig. 7 Performance tuned by introducing second phases for FeRh alloys.

(a) Room temperature XRD pattern of the FeRh sample (reprinted with permission from Ref. [87], Copyright 2022, American Chemical
Society); (b) room temperature under-focused Lorentz transmission electron microscopy (TEM) where the inset shows the selected area
electron diffraction along the [1, —3, —1] direction of the a-FeRh phase (reprinted with permission from Ref. [87], Copyright 2022,
American Chemical Society); (c) applying a 1.8 T, 0.13 Hz alternating magnetic field at 373 K, the adiabatic temperature change for FeRh
alloys as a function of time and the number of magnetic field cycles (reprinted with permission from Ref. [87], Copyright 2022, American
Chemical Society); (d) adiabatic temperature change as a function of temperature in a 0.62 T alternating magnetic field with variant
frequencies where the inset shows the value and position of the peak as a function of frequency [87] (reprinted with permission from Ref.

[87], Copyright 2022, American Chemical Society).
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0.13 Hz alternating magnetic field, exhibiting a better
cycling stability than studies before (usually 40%—-50%)
[88,89] (Fig. 7(c)). The local stress and stray magnetic
field caused by the second phases impacting the energy
distribution should recede the function of domain walls,
which would account for the improved cycling stability
[90-92]. Moreover, the lowered driving field should be
attributed to the second phases promoting nucleation
formation. Figure 7(d) revealed that with a low magnetic
field 0.62 T, the temperature change was 0.48 K, 70%
bigger than that in FeRh with a single phase reported
before [93].

In addition, Gao et al. [33] and Seo et al. [94] indepen-
dently found a giant reversible barocaloric effect trigger-
ed by low pressure in (CH3;—(CH,),_1—NH3),MnCly
organic-inorganic hybridization materials [95] with a
layered perovskite structure. The single crystal sample
(CH3—(CH3),-1—NH3),MnCly (n=10) exhibited thermal

hysteresis as small as 2.6 K (inset of Fig. 8(a)). Different
layers were linked by van der Waals force, while in the
same layer “carbon chain”-“inorganic group”-“carbon
chain” stacked together by hydrogen bonds (N—H---CI)
(Fig. 8(a)). SC-XRD and infrared spectra at selected
temperatures revealed that during the transition, carbon
chains underwent a melting process from a settled
structure to an unconstrained state, which should claim
for the large entropy change (Figs. 8(b)-8(e)). Gao et al.
also believed that the absence of grain boundaries in the
single crystal together with the special hybrid structure
might explain the large reversible barocaloric effect of
about 230 J/(kg-K) induced by a small field 0.08 GPa
(Figs. 8(f), 8(g)). Figures 8(h) and 8(i) display that in
comparison to other work, the superiority of this material
focuses on low driving fields. In addition, Seo et al.
discovered a similar phenomenon in (NA),CuBrs (NA =
nonylammonium) [94].
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Fig. 8 Materials with a giant reversible barocaloric effect triggered by low pressure.

(a) Schematic of the molecular structure of (CH3-(CHz),-1—NH3),MnCly (rn = 10) at 298 K where the carbon chains are connected to the
inorganic group through N—H---Cl hydrogen bonds, (the left inset shows the morphology of the crystal, and the right inset shows dQ/d7-T
curves recorded by DSC upon cooling and heating); (b) layer structure; (c) monoclinic lattice of the organic-inorganic-organic material
observed along b axis at 298 K; (d) structure possessing melted carbon chains with various configurations observed along b axis;
(e) tetragonal lattice observed along a axis at 320 K; (f) reversible isothermal entropy change calculated by the overlap of applying and
removing pressure for the single crystal; (g) adiabatic temperature change attained by eliminating the impact of thermal hysteresis [30,96]
as a function of temperature with different pressure changes for the single crystal; (h) maximal reversible isothermal entropy change;
(i) adiabatic temperature change as a function of pressure of this study and previous studies [33].
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3 Conclusions

To face the challenge of replacing traditional refrigerants
with caloric materials, multifield tuning and multicaloric
materials come into sight. By applying variant fields,
many improvements can be achieved, such as reducing
hysteresis losses, improving the magnitude of entropy
changes, adjusting transition temperatures, and
broadening transition temperature spans. Therefore, this
is a potential method for further promoting the
application of caloric materials. Other methods like
hybridizing organic-inorganic materials and introducing
second phases are also promising for improving caloric
performance. However, there are still many things
waiting for researchers to explore. Till now, the research
on coupled-caloric effects has mainly been focused on
materials with magnet-structural couplings, and a few on
electric-structural and electric-magnetic couplings by
theoretical means. In addition, cooling prototypes
utilizing multifield are still at the early stage.
Furthermore, the underlying mechanism of the coupling
between different ferro-orders still requires further
investigation for different materials. The new phonon
evolution mechanism found during the investigation on
the sign of spin and lattice entropy changes in La(Fe,Si);3
compound means there are more unrevealed, calling for
further studies.
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