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The discovery and study of skyrmion materials  play an important role in basic frontier physics research and 
future information technology. The database of 196 materials, including 64 skyrmions, was established 
and predicted based on machine learning. A variety of intrinsic features are classified to optimize the model, 
and more than a dozen methods had been used to estimate the existence of skyrmion in magnetic materials, 
such as support vector machines, k-nearest neighbor, and ensembles of trees. It is found that magnetic 
materials can be more accurately divided into skyrmion and non-skyrmion classes by using the classification 
of electronic layer. Note that the rare earths are the key elements affecting the production of skyrmion. The 
accuracy and reliability of random undersampling bagged trees were 87.5% and 0.89, respectively, which 
have the potential to build a reliable machine learning model from small data. The existence of skyrmions 
in LaBaMnO is predicted by the trained model and verified by micromagnetic theory and experiments.

Introduction

Magnetic skyrmions are expected to be the next generation of 
information carriers with high capacity, high-speed reading and 
writing, low-power consumption, and nonvolatile information 
storage [1,2]. The skyrmions observed in the experiments are 
smaller than typical domain wall lengths, and the topological 
protection contributes to superior thermal stability, showing the 
exciting potential for encoding vast amounts of information [3,4]. 
The current density required to move skyrmion is about 106 A/m2, 
which is 4 to 5 orders of magnitude smaller than moving fer-
roelectric domain walls [4–6]. Due to the advantages of nano-
scale, topological protection, and low spin current regulation, 
skyrmions are considered promising for spintronic applications. 
It is feasible to study skyrmions by traditional experimental 
methods of preparation and observation, but the randomness 
of the results and the variety of costs are unaffordable for ordinary 
institutions [7–10]. The essential reason for the low throughput 
of experimental data generation is the time-consuming and expen-
sive synthesis process. Moreover, microscopic characterization is 
also required to reliably report the crystal structure and mag-
netism of these alloys, which adds to the difficulty of research [11,12].

To date, more and more attention has been paid to the 
application of computational methods in alloy design. Based 

on first-principles calculations with multiple scattering Korringa–
Kohn–Rostoker formalism, Mankovsky et al. [13] demonstrated 
that the strength of Dzyaloshinskii–Moriya (DM) term was 
strongly dependent on alloy substitution and epitaxial strain. 
Density functional theory (DFT) calculations have also been 
applied to study the electron dynamics in the skyrmion phase 
of Fe-rich Mn1−xFexGe alloys [14]. However, computational 
efforts involving DFT have mainly focused on interpreting or 
extracting properties from the perspective of band theory 
[14–18]. In fact, the principles of alloy theory and the periodic 
table offer more avenues for composition design than what has 
been explored in the literature. For example, Shimono et al. 
[19] developed the statistical method based on machine learning 
to predict the chemical categories ideally suitable for creating 
chiral molecules. This model employs a probabilistic classifier 
and an artificial neural network, which further enhances the 
deep learning approach of previous work.

Artificial intelligence combined with deep learning-based 
statistical techniques can make predictions for novel uncharac-
terized materials and invent completely new materials [20]. 
Machine learning can express complex function mappings 
without the knowledge of structural features, and they form to 
be an effective estimation technique in the analysis of nonlinear 
behaviors. Input and output relationship of the system can be 
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predicted through machine learning irrespective of the under-
standing of detailed mechanisms [9,21]. Previous studies have 
found that skyrmion is not limited to the magnets with DM 
interaction, such as B20, but widely exists in  magnetic materials, 
thus requiring the assistance of high-throughput calculation 
[22–24]. However, there is no effective method to predict the 
accuracy of chiral crystal formation, and it is even more difficult 
to predict the coexistence of chiral geometries when multiple 
atoms are mixed [25,26]. For this kind of high dimensionality 
problem, the choice of features and classification schemes is crucial 
to achieving the system with high predictive performance [27–30]. 
Various logical models have been optimized to find a statistical 
technique to predict whether a substance is a skyrmion. In this 
work, machine learning algorithms, such as ensembles of trees, 
linear regression models, support vector machine (SVM), 
k-nearest neighbor (KNN), and naive Bayes, are used to analyze 
the dataset. Their abilities to classify materials were compared, 
and the model with the highest accuracy of 87.5% was obtained.

Results and Discussion

Data science needs to find an appropriate classification method, 
especially when the amount of data is limited. The electronic 
layer, outermost electron number, principal quantum number, 
and element occurrence frequency, which have great influence 
on the material properties, were selected as intrinsic features. The 
difference between electronic layer classification and principal 
quantum number classification is that the former uses rare earth 
as an independent group based on the latter. From the accuracy 
and reliability of the models in Fig. 1, it can be seen that the 
classification based on the electronic layer works best. For models 
with poor performance, increasing the number of training ses-
sions or providing more data in model creation may improve 
accuracy. However, the effect of the model is difficult to be stable, 
indicating that there is a serious overfitting at this time.

As shown in Table 1, the accuracy and reliability of different 
algorithms based on electronic layer classification are mostly 
above 76.3% and 0.72. Compared with other algorithms, the 

constraint relationship between predictors and target parameters 
in linear models may lead to lower prediction accuracy, such 
as logistic regression and linear discriminant. The performance 
of bagged trees, boosted trees, KNN, and SVM is introduced 
in detail below. The chemical composition of each material is 
represented by a linear combination of weighted contributions 

Table 1. Classification accuracy and reliability values for differ-
ent proposed methods based on electronic layers.

Method Accuracy Reliability

RUS bagged trees 87.5% 0.89

Boosted trees 87.4% 0.86

Bagged trees 82.5% 0.82

Weighted KNN 81.3% 0.82

Cubic SVM 83.8% 0.80

Quadratic SVM 82.5% 0.79

Coarse Gaussian SVM 80.0% 0.79

Linear SVM 76.3% 0.78

Squad SVM 82.5% 0.76

Cubic KNN 82.5% 0.76

Subspace discriminant 81.3% 0.75

Logistic regression 83.8% 0.74

Medium KNN 82.5% 0.74

Cosine KNN 81.3% 0.72

Neural network 77.2% 0.75

Linear discriminant 76.5% 0.72

Medium Gaussian SVM 85.0% 0.69

Fine Gaussian SVM 80.0% 0.65

Naive Bayes 53.7% 0.58

Fig. 1. Reliability (A) and accuracy (B) of models under different intrinsic features, such as outermost electron number, electronic layers, principal quantum number, and 
element distribution frequency. Data points of the same color represent the results of different algorithms using the same classification.
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from these element classes. For example, Fe3Sn2 is described as 
0.6 × label 3 + 0.4 × label 4. Labels refer to different electronic 
layers, which can be found in Table 2. Note that the rare earth 
elements with electronic layers of 6 are included as a separate 
group to make the model work better.

Bagged trees
We used the bootstrap method to create different samples from 
the original data and constructed the forest using the independent 
decision trees generated from each sample [31–34]. The 

results predicted from bagged trees can reduce overfitting and 
be more stable due to the differences between bootstrap sam-
ples. Compared with traditional decision trees, bagged trees is 
an integrated model that can solve the problems of poor sta-
bility and data fragmentation. As can be seen in Fig. 2A, parallel 
coordinate plot (PCP) was used to realize the visualization of 
high-dimensional multivariate data [35]. PCP shows the 
importance of each label in attribute type and the interrelation 
between labels. Each vertical line in this figure represents the 
class of electronic layer, and each sample is shown as a broken 

Table 2. The elements are divided into labels 1 to 6 according to the principal quantum number.

Label 1 Label 2 Label 3 Label 4 Label 5 Label 6

Number of electron 
layers

2 3 4 5 6 6&RE

Elements B, O, F Si, Na, Al, Mg, S
Fe, Co, Mn, Ge, 
Cu, Se, Ga, Ni, 
Cr, As, Br, Sc, V

Sn, Sr, Cd, Te, Y, 
Mo, Pd, Te, I

Ta, Bi, Pt, Ba
La, Nd, Gd, Tb, 

Ho, Er, Yb

Fig. 2. Model performance obtained after training bagged trees algorithm. (A) Parallel coordinator plot. (B) The accuracy and reliability of the model were calculated as a 
function of training data. (C) Confusion matrix. (D) ROC curve, which is used to evaluate its predictive ability.
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line running through all the vertical lines. As one can see, the 
lines on label 3 are more chaotic. This is because most materials 
contain elements in label 3, resulting in little influence of this 
label on the prediction. However, the same types of lines on 
labels 4 and 6 are concentrated, and the different types of lines 
are scattered, indicating that these labels are of great help in 
predicting the skyrmion category.

Figure 2B shows the changes in model accuracy and relia-
bility with the increase of training data. When the training data 
are around 30, the model effect drops sharply, indicating that 
the newly added data have an adverse impact on the model. 
However, this part of data has been well learned with the 
increase in the number of iterations and the amount of data. 
The accuracy and reliability are also gradually improved and 
stabilized. Receiver operating characteristic (ROC) curve based 
on confusion matrix (Fig. 2C) was used to evaluate the predic-
tive ability. Figure 2D shows the ROC curve obtained after the 
stabilization of the algorithm, where the abscissa is the false 
positive rate (FPR) and the ordinate is the true positive rate 
(TPR). The FPR only has an error of 5%, indicating that the 
probability of misjudging the material as skyrmion is very 
small. The accuracy of bagged trees classifier is 82.5%, and the 
area under ROC curve (AUC) is 0.82. AUC is a comprehensive 

measure of the effect of all possible classification thresholds 
and is intended to determine the degree of reliability or the 
ability to correctly predict categories. AUC ranged from 0.5 to 
1, with the higher the better. Bagged trees algorithm relies on 
many decision trees rather than a single decision tree, which 
allows the model to leverage the insights of multiple models. 
However, the increased complexity and randomness of the 
computational process make bagged trees difficult to interpret. 
Appropriate classification of bagging during the analysis of 
material data can make it easier for computers to find correla-
tions between components. Boosted trees and random under-
sampling (RUS) bagged trees described below are both variations 
of bagged trees.

Boosted trees and RUS bagged trees
Boosted trees and RUS bagged trees are the most ideal models 
in this work with high accuracy and AUC value. The bootstrap 
samples of boosted trees are not randomly selected. When a 
decision tree is generated, boosted trees algorithm checks it 
against the entire sample and generates a new decision tree by 
minimizing the false predictions of all previous trees [32,36]. 
We use the adaptive boosting algorithm, and the accuracy of 
forest prediction is constantly improved with the sequential 

Fig. 3. (A) ROC curve of boosted trees. (B) Confusion matrix of boosted trees. (C) Accuracy and reliability of RUS bagged trees vary with training data. (D) PCP represents the 
influence of different labels on classification of RUS bagged trees.

https://doi.org/10.34133/research.0082


Liu et al. 2023 | https://doi.org/10.34133/research.0082 5

construction of decision trees. The AUC value in Fig. 3A is 0.88, 
which is higher than the result of bagged trees. Figure 3B eval-
uates the performance of the classifier by comparing positive 
(1) or negative (0) skyrmion data categories of the evaluation 
set with trained prediction categories. The TPR of this algo-
rithm is 97%, which is very suitable for evaluating the perfor-
mance of classification models. However, there are some defects 
in false negative prediction, which may be caused by insuffi-
cient interference terms in the data. Future improvements can 
be made by, for example, increasing the sample size to improve 
the accuracy of the predictions.

As shown in Fig. 3C, bagged trees with RUS has the accuracy 
and reliability of 87.5% and 0.89, respectively. The number of 
instances in the majority class was undersampled to solve the 
problem of class imbalance. It has been reported that the under-
sampling scheme based on heterogeneous consensus clustering 
has better prediction performance [37,38]. The importance of 
each label and how the labels relate to each other were analyzed 
according to PCP. The attribute value is obtained in the form 
of standard deviation of true or false skyrmion as depicted in 
Fig. 3D. The lines and colors on label 3 are mixed, indicating that 

this attribute is not helpful for the determination of skyrmion 
category. This is because most magnetic materials contain the 
elements in label 3, regardless of whether they are skyrmion 
materials. However, the same color polylines on label 4 to 6 axes 
are more concentrated, and different colors have certain spacing. 
Rare earth elements, in particular, have shown a key role in 
predicting material categories. Previous studies have also found 
that rare earths are beneficial to the formation of helical magnetic 
structures and adjustment of magnetic crystal anisotropy due 
to their strong spin-orbit coupling and high atomic magnetic 
moment [39–41]. For example, the substitution of Sc3+ induced 
the transformation of hexagonal ferrites from collinear to helical 
magnetic structures, and skyrmion domains were observed at 
room temperature without magnetic field. Therefore, rare earth 
was divided into a separate group for better modeling.

Support vector machine
SVM is a machine learning algorithm, which can handle 
high-latitude data and adapt to the small dataset, and has also 
shown its applicability in this project. We use different kernel 
functions such as linear kernel, cubic kernel, quadratic kernel, 

Fig. 4. Model performance obtained after training cubic SVM. (A) ROC curve, used to represent TPR against the FPR at various thresholds. (B) Parallel coordinator plot. (C) 
Accuracy and reliability vary with training data. (D) Confusion matrix.
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and Gaussian kernel to ensure the nonlinear fitting ability of 
SVM model and reduce the complexity of vector inner product 
operation. However, it is difficult to adjust parameters and the 
training speed is slow. Since the model is not prone to over-
fitting, a better model can be obtained by increasing the train-
ing times while increasing the amount and dimension of data. 
It is found that the SVM with cubic kernel function has the 
highest accuracy. PCP in Fig. 4 shows that the elements in labels 
2 and 6 have a great effect on the formation of skyrmion. The 
AUC value of cubic SVM is 0.80, which is slightly lower than 
the result of boosted trees, but still has a good effect. The poor 
false negative rate indicates that the model lacks understanding 
of the skyrmion material system. Seow and Ziegler [42] sug-
gested a remedial measure to overcome the underprediction 
problem. It involves synthetically increasing the proportion of 
the high-value points using bootstrapping or oversampling so 
that the relative proportion of the high-value data points 
becomes large. The environmental engineering problem is at 
least 30 times larger than the skyrmion dataset. Therefore, 
experimental validations are still needed to test the under-
prediction problem and provide feedback for machine learning 
model improvement.

Weighted KNN
The dataset based on different weighted KNN methods was 
trained for magnetic domain prediction. Among the medium 
KNN, cosine KNN, cubic KNN, and weighted KNN algorithms, 
the last one is considered to be the best option. Other KNN 
algorithms have relatively low accuracy and weak stability, 
which are not suitable for machine learning with high-latitude 
data. As the simplest and most common machine learning method, 
KNN has a simple principle and better applicability after weight-
ing. Weighted KNN is an improved algorithm on the basis of 
fine KNN, and its accuracy and reliability are optimized to 82.5% 
and 0.76, respectively. The PCP in Fig. 5 also shows that label 
6 plays an important role in predicting skyrmion categories. 
Compared with SVM, weighted KNN has slightly lower accu-
racy, but higher reliability and practicability. It is because the 
AUC value of SVM is relatively low, which may be due to 
underfitting and strong randomness caused by insufficient data.

Figure 6 shows the hot spot maps of RUS bagged trees, 
bagged trees, cubic SVM, weighted KNN, double-layer neural 
network, and naive Bayes. As we know, there is a restrictive 
relationship between accuracy and reliability, that is, the higher 
the accuracy, the lower the reliability. Hot spot map was used 

Fig. 5. Model performance obtained after training weighted KNN. (A) ROC curve, used to represent TPR against the FPR at various thresholds. (B) Parallel coordinator plot. 
(C) Accuracy and reliability vary with training data. (D) Confusion matrix.
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to show the combined effect of accuracy and reliability with 
the number of training data. The lighter the color inside the 
green box, the better the prediction of the model (the training 
data outside the green box are too small to be referenced). The 
area between the black lines shows the product of accuracy and 
reliability in the corresponding training dataset. It is found that 
when the 25 to 32 sets of data are added to the training, the 

color of hot spot map suddenly became darker. That is, these 
data have a detrimental effect on the models, which is consistent 
with the results obtained above. This is mainly because these 
data contain a large number of new elements that were not 
included in the previous dataset, leading to improper adaptation 
of the model. However, the accuracy and reliability gradually 
recover with the increase of data size and training times, 

Fig. 6. Hot spot map for different algorithms. (A) RUS bagged trees. (B) Bagged trees. (C) Cubic SVM. (D) Weighted KNN. (E) Double-layer neural network. (F) Naive Bayes. The 
area between the black lines shows the product of accuracy and reliability at the corresponding training dataset. The performance of models (A) to (F) gets worse progressively.

Fig. 7. (A) Magnetic domain structure of LaBaMnO film in a magnetic field around 3,500 Oe and (B) corresponding simulation results. The in-plane and lateral magnetic moment 
distributions in the yellow boxes are shown in (C) and (D), respectively.
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indicating that the model has learned this part of data. In con-
trast, neural network and naive Bayes model in Fig. 6F per-
formed the worst. Such models cannot reduce the dimension 
of feature space and are insensitive to the strength of different 
features [43]. Although the uniform color expresses that the reli-
ability of naive Bayes is stable, its accuracy is only about 53.7%, 
making it difficult to analyze high-dimensional data and find 
the hidden relationship between data. In the empirical analysis, 
the conventional deep neural network architectures combined 
with the weighted functions can improve the prediction per-
formance [44,45].

As can be seen from the confusion matrix in Figs. 2 to 5, 
our models have a high TPR and are suitable for prediction. 
Therefore, we can use the models to predict the new skyrmion 
material. The confidence that Sr(Fe1−xScx)12O19 contains skyr-
mion in the range of 0.05 to 0.3 is 79%, indicating that it is most 
likely to be skyrmion material. In addition, La2/3Ba1/3MnO3 
alloy, which was not part of the dataset, was taken as a test case 
to verify the model trained by bagged trees. According to 

machine learning results under electron layer classification, the 
probability of the existence of skyrmion domain in LaBaMnO 
is more than 80%, which indicates that this material most likely 
contains skyrmion. This conclusion is verified by the micro-
magnetic and experimental results. The domain structure of 
LaBaMnO film prepared by pulsed laser deposition under 500 
Oe magnetic field is shown in Fig. 7. The corresponding sim-
ulation results also show that LaBaMnO can form stable 
skyrmion domains. This simple, yet powerful, exercise demon-
strates the predictive capabilities of trained machine learning 
models and can be used to rapidly predict the topological prop-
erties of previously unexplored alloy compositions.

Conclusion

In this work, the skyrmion database is established on the foun-
dations of machine learning. Machine learning algorithms such 
as logistic regression, SVM, decision trees, KNN, naive Bayes, 
and neural network were used to classify and analyze the data. 

Fig. 8. Data distribution matrix. The subplot in the ith row, jth column of the figure is a scatterplot of the ith column against the jth column. The subaxes along the diagonal 
are histogram plots of the corresponding classes.
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It is found that the number of electronic layers is a suitable 
intrinsic feature for element classification, and more than 10 
models can meet the application conditions. The RUS bagging 
trees had the best effect, with the accuracy and reliability of 
87.5% and 0.89, respectively. The RUS bagging trees show the 
potential to build reliable machine learning models from small 
data. The PCPs show that rare earths in label 6, although not 
abundant in the materials, play an important role in the pre-
diction of skyrmions. The trained machine learning was used to 
predict the magnetic domain of LaBaMnO, and the possibility 
of becoming skyrmion material was confirmed by micromag-
netic simulation and experiment. Without complex techniques 
and advanced modalities, reliable results were obtained using 
only commonly accessible properties, which provide a basis 
and guidance for the field of auxiliary materials science and 
crystal design.

Methods

Machine learning can be used in materials science to achieve 
pre-experimental prediction. In this work, a database of 196 
materials, including 64 kinds of skyrmions, was obtained and 
analyzed according to different classification methods. More 
data about non-skyrmion could help prevent the occurrence 
of allergies. Electronic layers, outermost electron number, prin-
cipal quantum number, and element occurrence frequency 
were selected as features and applied to classifier. Further prob-
abilistic computation was performed to find out the chance of 
true or false skyrmion in the input dataset. Taking electron 
layer classification as an example, as shown in Fig. 8, we divided 
the elements involved in the materials into 6 labels. The subplot 
in ith row, jth column of the matrix is a scatterplot of the ith 
column against the jth column. For instance, row 1 and column 2 

in this figure is a scatterplot with label 2 as abscissa and label 1 
as ordinate. The subplots along the diagonal are replaced with 
histogram plots of the data in the corresponding column. The 
subplot in the first row, first column refers to the data distri-
bution density of label 1, which can be used to investigate the 
effect of this label on the formation of skyrmion. The closer the 
value gets to 1, the more elements of this label are present in 
skyrmion materials. All data are represented by the subplot in 
row 7 and column 7, and the category of skyrmion is represented 
by 1 and 0.

Figure 9 shows the procedure of data-driven strategy, and 
the different machine learning algorithms are listed in Table 3 
[31,46,47]. Kernel functions are used to convert the input data 
from linearly nonseparable to linearly separable. The greater 
the separation, the better the performance. SVMs use linear, 
squad, quadratic, and cubic kernels to establish the relation-
ship between the input descriptors and the presence or absence 
of skyrmion. In addition, the SVM methods of fine Gaussian, 
medium Gaussian, and coarse Gaussian are also involved [48]. 
KNN models can preprocess the raw data collected from the 
data logger, such as removing irrelevant and noisy data from 
the dataset to improve accuracy [49]. We also use 2 types of 
ensembles of trees, bagged trees, and boosted trees, which com-
bine similar (or different) algorithms to provide more accurate 
predictions.
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