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A B S T R A C T

The optimization of high-abundance REFeB (RE=PrNd,La,Ce) permanent magnets has been a significant research 
focus, but traditional trial-and-error methods are challenging due to high costs and time consumption. Here, we 
propose a machine-learning approach to accelerate the design of melt-spun high-abundance (PrNd,La,Ce)-Fe-B 
ribbons based on the database incorporating elemental electronegativity with the composition and magnetic 
performance collected from literature. By combining heuristic optimization algorithms and ensemble strategies, 
we developed accurate and robust machine learning models, allowing for rapid evaluation of comprehensive 
magnetic performance across different compositions in high-dimensional data spaces and discovering high- 
performance REFeB permanent magnets with high-abundance rare earth elements. Utilizing the established 
models, by balancing three magnetic properties of coercivity, remanence and maximum magnetic energy 
product, we discovered a compositional range with optimal overall magnetic performance and high proportions 
of high-abundance rare earth elements (up to 40 % La and 20 % Ce of the total rare earth content) for the 
magnets of (PrNdxLayCe1-x-y)12Fe82B6, which were verified by experiments with accuracies exceeding 90 %. 
Within this range, four cost-effective compositions were identified, among which the best composition, (Pr, 
Nd)8.1La3.6Ce0.3Fe82B6, achieved a 31.3 % cost reduction while retaining 86.4 % of the magnetic performance. 
This study advances the optimization of REFeB compositions with high-abundance rare earth elements, 
demonstrating the enormous potential of machine-learning approach in the design and development of high- 
performance and cost-effective REFeB permanent magnets.

1. Introduction

Since first discovered in 1984, Sagawa et al. [1] NdFeB magnets have 
rapidly become one of the most widely utilized rare-earth permanent 
magnets, renowned for their exceptional comprehensive magnetic per-
formance. They have emerged as a cornerstone in the industrial sector, 
finding extensive applications in various fields such as the automotive 
industry, wind power generation, and clean energy, constituting over 

half of the market value in the magnet industry [2,3] Building on the 
success of NdFeB magnets, the development of other REFeB permanent 
magnets gained increasing attention, particularly as part of efforts to 
reduce reliance on critical rare earth elements, considerable endeavors 
have been devoted to developing high-performance REFeB magnets 
[4–6] The common magnetic properties used to evaluate the magnetic 
performance of REFeB include remanence Br, intrinsic coercivity Hcj and 
maximum magnetic energy product (BH)max. The factors influencing on 
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the magnetic performance of REFeB permanent magnets are diverse and 
complex [7]. Variations in the magnet’s elemental substitutions and 
atomic percentages, as well as its microstructures and manufacturing 
processes, can all induce changes in magnetic performance. Moreover, 
in pursuit of cost reduction and balancing rare earth resources, re-
searchers are dedicated to substituting Pr and Nd with high-abundance 
rare earth elements, particularly La and Ce, [8–11] which brought the 
problem of the decline in magnetic performance. Hence, the design of 
high abundant REFeB permanent magnets that maintain both high levels 
of high-abundance rare earth element substitution and relatively 
optimal magnetic properties continues to be a pivotal area of study. 
Almost all rare earth elements can form the RE2Fe14B phase, presenting 
numerous opportunities for compositional design in high abundant 
REFeB magnets, but also introducing issues related to high experimental 
costs and time consumption. The traditional trial-and-error approach 
encounters challenges in navigating such an expansive search space 
(Supplementary materials, Note1). As a result, there exists a pressing 
requirement for an innovative, efficient, and economical approach to 
investigate the magnetic performance of high abundant REFeB perma-
nent magnets.

As an emerging and innovative methodology, machine learning has 
gradually integrated into academic research, marking a new paradigm 
in scientific research within materials science. Grounded in statistical 
theory, machine learning employs statistical models to identify patterns 
and relationships within data, enabling subsequent inferences and pre-
dictions derived from these recognized patterns. Recently, machine 
learning has found extensive application in various material science 
fields including superconductors, [12–16] high-entropy alloys [17–21]. 
Its rationality and effectiveness have garnered recognition from re-
searchers. In the field of magnetic materials, machine learning has 
demonstrated success in areas such as two-dimensional magnetic ma-
terials [22,23], soft magnetic materials [24,25]. However, its applica-
tion in permanent magnets remains in the early stages of development. 
Recently, Xu et al. [26] employed the machine learning methods to 
develop a physical-based machine-learning model for Sm-Co-based al-
loys, identifying key physical descriptors that influence the Curie tem-
perature. Choudhary et al. [27] used the machine learning models to 
predict the grain orientation in sintered FeNdB-type permanent mag-
nets. Despite these advancements, the application of machine learning 
for compositional optimization of RE-Fe-B permanent magnets, partic-
ularly with a focus on substituting high-abundance rare-earth elements 
such as La and Ce, still remains limited.

In this study, we introduce a novel machine-learning framework that 
combines heuristic optimization algorithms with ensemble strategies. 
we applied machine learning methods to melt-spun REFeB (RE=PrNd, 
La,Ce) ribbons by comprehensively evaluating three magnetic proper-
ties of high abundant REFeB magnets: coercivity(Hcj), remanence(Br), 
and maximum energy product((BH)max). To effectively enhance the 
model accuracy, we combined heuristic optimization algorithms with 
traditional machine learning regression models, facilitating rapid and 
efficient optimization for the regression models. Given the characteris-
tics of small datasets in materials science, ensemble strategies were 
employed to overcome the limitations of individual models and thus 
improve the model’s generalization ability. Utilizing the established 
high accuracy and robust models, we predicted and analyzed the rela-
tionship between the rare earth content and electronegativity parame-
ters of REFeB magnets and their magnetic performance. Based on the 
predictive results from the machine learning models, we identified a 
compositional range with a relatively high La/Ce proportion (25 % to 40 
% La, up to 20 % Ce) that exhibits optimal overall magnetic performance 
for (PrNdxLayCe1-x-y)12Fe82B6. The magnetic performance of this region 
has been experimentally verified with an accuracy (defined as 1 −

|Mexp − Mpred|/Mexp, where Mexp represents the experimental value, 
Mpred the predicted one)) of over 90 %. Furthermore, within this region, 
we identified a composition, (Pr,Nd)8.1La3.6Ce0.3Fe82B6, which retains 
86.4 % of overall magnetic performance while reducing material costs 

by 31.3 % compared to composition without La and Ce. In addition, 
three other compositions of (Pr,Nd)8.1La3.9Fe82B6, (Pr,Nd)8.4La3.6Fe82B6 
and (Pr,Nd)8.1La3.3Ce0.6Fe82B6 were also discovered, which achieve cost 
reductions of 31.4 %, 28.9 %, and 31.3 % while retaining 80.8 %, 80.7 % 
and 81.7 % of overall magnetic performance, respectively. These find-
ings provide insights for the optimization of REFeB magnetic materials, 
presenting a novel approach to the design and development of high- 
performance and cost-effective REFeB magnets.

2. Methodology

Fig. 1 illustrates the schematic flowchart of the machine learning 
method used in this work. Our study focuses on high-abundance melt- 
spun REFeB (RE=PrNd, La, Ce) permanent magnet ribbons. From the 
published literature (Supplementary Note 2), approximately 400 data 
entries for (PrNd, La, Ce)-Fe-B were manually collected. The machine 
learning regression models were evaluated using 16 mainstream algo-
rithms and trained on the constructed database, with the most effective 
models selected based on their predictive performance. These models 
were further optimized using three heuristic optimization algorithms, 
followed by an ensemble strategy to enhance model generalization. The 
final predictions and analysis were conducted based on the established 
models. Experimental verification was performed to ensure the accuracy 
of the model prediction results. The predicted results were further 
analyzed, leading to the identification of cost-effective compositions 
with favorable overall magnetic performance.

2.1. Database construction and model evaluation method

We designated the three key magnetic properties—remanence, 
intrinsic coercivity, and maximum magnetic energy product—as the 
target variables for our database to comprehensively evaluate the 
balanced performance of REFeB permanent magnets. To ensure that the 
selected features encapsulate the intricate relationships between inputs 
and outputs and enhance model interpretability, we included both the 
essential compositional content (at %) of REFeB (La, Ce, PrNd, Fe, B, Zr, 
Nb, Ga, Ti, Co) and electronegativity-related features. This compre-
hensive feature set aims to provide a deeper understanding of the factors 
and underlying mechanisms that influence the magnetic properties of 
REFeB magnets. Previous studies have suggested a potential correlation 
between electronegativity and the magnetic properties of rare-earth 
permanent magnets [28]. To explore this, we summarized statistical 
information related to electronegativity as model features, including the 
weighted difference [28], the weighted mean and the variance of elec-
tronegativity. The detailed calculation methods for electronegativity 
features, along with the complete set of features used in this work are 
listed in supplementary materials Table S1.

To better evaluate the machine learning models’ predictive perfor-
mance, we partitioned the data into an 8:2 ratio for training and testing, 
where the training set was used for model training, and the testing set 
was used to assess predictive accuracy. To enhance the reliability of the 
evaluation results, the k-fold cross-validation method (k = 6 in this 
work) was used, which scores k partitions of the dataset, averages their 
predictive accuracy as the final cross-validation score. We adopted the 
coefficient of determination (R2) as the assessment metric for machine- 
learning regression models, R2 is computed as: 

R2 = 1 −

∑N
i=0(yi − ŷi)

2

∑N
i=0(yi − y)2 (1) 

where yi represents the actual value, ŷi represents the predicted value, y 
represents the mean value, and N represents the number of data samples. 
R2 reflects the degree of fit and explanatory power of the regression 
models with values ranging between 0 and 1, higher R2 values closer to 1 
denote a better model fit to the data.
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2.2. Model constructed strategy

2.2.1. Heuristic optimization algorithms
Three heuristic optimization algorithms are employed in this study. 

Heuristic optimization algorithms are typically designed to efficiently 
find near-optimal solutions within a search space, making them partic-
ularly suitable for complex, non-convex optimization problems with 
expansive search spaces and intricate nonlinear relationships [29]. 
These algorithms usually simulate biological phenomena, learning from 
real-world processes to develop efficient search strategies. This enables 
the effective identification of near-optimal solutions within acceptable 

time limits, offering a more effective approach for optimizing machine 
learning models.

Each machine learning regression model has intrinsic parameters 
known as hyperparameters, which are not directly learned from the data 
but are adjusted according to the dataset’s characteristics. The optimi-
zation process varies across different models (Table S3 in Supplementary 
Materials), and each model involves multiple hyperparameters that 
require simultaneous tuning, making the process both complex and 
computationally demanding. To address this challenge, we employed 
three heuristic optimization algorithms (Fig. 2) to accelerate model 
optimization, namely genetic algorithms (GA) [30], differential 

Fig. 1. The design flow f this work.

Fig. 2. Optimization process of (a)GA algorithm (b) DE algorithm (c)PSO algorithm.

Z. Wang et al.                                                                                                                                                                                                                                   Acta Materialia 292 (2025) 121031 

3 



evolution algorithm (DE) [31], and particle swarm optimization algo-
rithm (PSO) [32], with their biological search strategies detailed in 
Supplementary Note 3.

2.2.2. Model ensemble strategy
Ensemble methods are also employed to enhance model general-

ization in this work. The ensemble strategy integrates multiple base 
models to produce final outputs through techniques such as averaging, 
bagging, boosting, and stacking. The base models used to build the 
ensemble model can be homogeneous or heterogeneous. By combining 
multiple machine learning algorithms, the ensemble method mitigates 
the weaknesses of individual models, thereby improving generalization 
[33]. Data acquisition for high-abundance REFeB magnets is challenging 
due to the high cost and time-consuming nature of experiments, leading 
to limited datasets and reduced model generalization. To mitigate this, 
we introduced the ensemble strategy in our machine learning frame-
work, combining predictions from two heterogeneous models to 
enhance model robustness and reliability.

For each magnetic property, two distinct regression models were 
selected and optimized. The predictive performance of all six optimized 
models was evaluated using the coefficient of determination (R²), con-
firming their predictive accuracy and consistency. We further compared 
the R² values of the two optimized models for each property, ensuring no 
significant differences in their predictive performance. This validation 
step confirmed the ensemble strategy would not compromise the accu-
racy of the final model. The final ensemble prediction was obtained by 
averaging the outputs of the two models, which reduced the likelihood 
of overfitting and consequently improved model robustness and gener-
alization. The ensemble method was implemented for all three magnetic 
properties, resulting in ensemble models for intrinsic coercivity, rema-
nence, and maximum magnetic energy product. The predictive perfor-
mance of the ensemble models is analyzed in the following sections.

The machine learning model training, model optimization and pre-
dictive analysis were coded in Python 3.9 with the scikit-learn open- 
source package [34], The heuristic optimization algorithms were 
implemented with the Python package pymoo [35].

2.3. Experimental details

Several experiments were conducted to verify the accuracy of the 
models. The alloy ingots were produced from the constituent elements 
using an arc melting technique under a high-purity argon atmosphere. 
Each ingot weighed 12 g, and all ingots were re-melted at least five times 
to ensure homogeneity. Ribbons were obtained by induction melting the 
ingot pieces and then ejecting the melt through an orifice onto the 
surface of a rotating copper wheel. The surface velocity of the copper 
wheel was varied in the range of 15–25 m/s to optimize the magnetic 
properties. Magnetic properties at room temperature were measured 
using vibrating sample magnetometer (VSM) with a maximum magnetic 
field of 2 T. The applied field is parallel to the plane of ribbons in order to 
minimize the demagnetization effect. The measured magnetic properties 
(Hcj, Br and (BH)max) are obtained by repeating measurements on five 
different samples under the same experimental conditions.

3. Results and discussion

3.1. Model construction

The model construction process of this work is illustrated in Fig. S3 
(see Supplementary materials). To determine the optimal regression 
models, we trained 16 mainstream machine learning regression algo-
rithms, encompassing a variety of types such as linear regression and 
support vector machines (Supplementary materials Note 3). Each algo-
rithm was trained to predict intrinsic coercivity, remanence, and 
maximum energy product of high-abundance REFeB magnets, resulting 
in a total of 48 model training. The models were preliminarily screened 

using the cross-validated R² score as the evaluation metric. Fig. 3 depicts 
the varied predictive performance among different regression models. 
The coefficient of determination (R2) values closer to 1 indicates a better 
fit of the model’s predictions with the true values, signifying stronger 
predictive capabilities. The error bars in the graph represent the stan-
dard deviation of the 6-fold cross-validation results. We prioritize 
models with higher R2 scores and smaller standard deviations, the re-
sults show that for coercivity, the models LightGBM (LGBM) and 
Gradient Boosting (GB) exhibit the highest R² values and relatively small 
standard deviations, identifying them as the top-performing models 
among the 16 evaluated. Similarly, for remanence, the best-performing 
models are Gradient Boosting (GB) and XGBoost (XGB), while for 
maximum magnetic energy product, the models LightGBM (LGBM) and 
Gradient Boosting (GB) achieve superior predictive accuracy with 
smaller errors.

Three heuristic optimization algorithms, namely Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), and Differential Evolution 
(DE), were then employed to optimize the six best-performing models 
selected for each magnetic property. Compared to traditional optimi-
zation methods, heuristic algorithms offer a faster and more efficient 
model optimization approach, achieving significant improvements in 
both efficiency and accuracy. As demonstrated in our tests, heuristic 
optimization (GA) reduced optimization time nearly tenfold compared 
to the traditional Grid Search method (Supplementary Information, 
Table S6), greatly enhancing computational efficiency. The accuracy of 
the models also improved through the application of heuristic optimi-
zation algorithms, after 18 optimizations, the coefficient of determina-
tion (R²) for all six models was significantly increased, as shown in 
Table 1.

To evaluate the model’s predictive performance, Figs. 4 and 5
compare the predicted values of the models with the actual data. Fig. 4
compares the two optimized models for each magnetic property of 
REFeB against approximately 80 actual data points from the test dataset. 
While minor differences exist, the curves exhibit notable consistency 
between predicted and actual data, which further demonstrates that the 
six regression models possess high precision and strong predictive ca-
pabilities. It is also important to note that the results in Fig. 4 demon-
strate the similar predictive performance of both optimized models for 
each magnetic parameter, indicating comparable predictive abilities 
without significant differences, which opens up the possibility of the 
next ensemble step. Besides, we compared the prediction performance of 
the ensemble models and the optimized models using parity plots 
(Fig. 5), in which the proximity of data points to the diagonal line in-
dicates how closely the model predictions match the actual results. 
Before introducing the ensemble strategy, the six optimized regression 
models clustered closely near the diagonal line. Among them, the best 
results were observed for Br, achieving an R² of approximately 0.930, 
with data points distributed closest to the diagonal, demonstrating a 
strong alignment between predicted and actual values. The results for 
Hcj and (BH)max were slightly lower but still maintained R² values 
around 0.90, with data points closely distributed around the diagonal as 
well. For the ensemble models, Table 1 showed the ensemble models had 
higher R² values compared to the individual optimized models, with 
final R² values of 0.927, 0.932, and 0.907 for Hcj, Br, and (BH)max, 
respectively. As previously discussed, the ensemble strategy can miti-
gate the limitations of single models, enhancing model generalization 
and increasing prediction reliability. As shown in Table 1, the R² values 
of the models improved after applying the ensemble strategy, demon-
strating the feasibility of our ensemble strategy. We also observed that in 
Fig. 5, data points in the ensemble models were more concentrated along 
the diagonal compared to the optimized models before the ensemble, 
which corresponds to higher R2 values for the ensemble models, high-
lighting the advantages of our ensemble strategy in its application of RE- 
Fe-B permanent magnets.
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3.2. Model predictions and analysis

Using the optimized ensemble machine learning models, we pre-
dicted and analyzed the performance of high-abundance REFeB magnets 
based on database variables, including electronegativity parameters and 
chemical composition. We investigated the relationship between elec-
tronegativity parameters and magnetic performance, and predicted the 
magnetic properties across varying rare earth element contents to 
identify high-abundance rare earth permanent magnets with optimal 
overall magnetic performance.

3.2.1. Electronegativity analysis
The feature importance ranking provided by the model (supple-

mentary material, Fig. S2) shows that more than half of the top 10 most 
important features are related to electronegativity, highlighting the 

necessity to explore the relationship between electronegativity and 
magnetic properties. Based on the original composition distribution 
within the dataset, we generated a virtual dataset encompassing a broad 
span of chemical compositions for RE-Fe-B magnets. We then calculated 
the statistical information of electronegativity and compared it with the 
predicted magnetic properties, the result was presented in the parallel 
coordinate plot (Fig. 6).

A discernible correlation exists between the electronegativity fea-
tures of (PrNd,La,Ce)-Fe-B magnets and their magnetic properties. Our 
models utilized four features derived from electronegativity: the 
weighted sum of electronegativity (ENWsum) and the weighted difference 
of electronegativity (ENWdif), along with the corresponding variances of 
these features, denoted as ENWSvar and ENWDvar, respectively. The 
weighted sum of electronegativity reflects the average level of electro-
negativity among different elements, while the weighted difference 

Fig. 3. Performance comparison of various machine learning models for (a) Hcj (b) Br (c) (BH)max models, assessed using R2 scores.

Table 1 
R2 scores of different models.

Hcj Br (BH)max

Models GB 
Model

LGBM 
Model

GB 
Model

XGB 
Model

LGBM 
Model

GB 
Model

Individual 
Models

Initial R2 0.861 0.867 0.877 0.864 0.782 0.783
GA optimized R2 0.916 0.919 0.930 0.927 0.893 0.901
PSO optimized R2 0.912 0.907 0.909 0.921 0.890 0.888
DE optimized R2 0.920 0.906 0.923 0.924 0.884 0.888
Best optimized Model DE-GB GA-LGBM GA-GB GA-XGB GA-LGBM GA-GB

Ensemble 
Models

Ensembled R2 0.927 0.932 0.907
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Fig. 4. Comparison of actual and predicted values of the test set data for different magnetic properties using the optimized models: (a) predicted (BH)max values 
using LGBM, GB, and actual values (b) predicted Hcj values using LGBM, GB, and actual values (c) predicted Br values using XGB, GB, and actual values.

Fig. 5. The parity plots of test set data for Hcj, Br, (BH)max using different models. (a) LightGBM for Hcj (b) GradientBoosting for Hcj (c) Ensemble model for Hcj (d) 
XGBoost for Br (e) GradientBoosting for Br (f) Ensemble model for Br (g) LightGBM for (BH)max (h) GradientBoosting for (BH)max (i) Ensemble model for (BH)max.
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highlights the electronegativity disparity between rare-earth elements 
and non-rare-earth elements. Variance reflects the degree of variation in 
electronegativity among different elements in the magnet. The color of 
the lines in the parallel coordinate plot visually demonstrates the rela-
tionship between different factors and the target variables. It is evident 
that for coercivity and remanence, the color distributions of the four 
electronegativity features are clearly positively or negatively correlated 
with the corresponding magnetic performance color distributions, 
respectively. For remanence, the color distributions of the weighted 
means of electronegativity (ENWsum and ENWdif) align with the rema-
nence color distribution, meaning that high ENWsum and high ENWdif 
correspond to high remanence values, while low ENWsum and low ENWdif 
correspond to lower remanence values. The variance shows an opposite 
trend, the greater the fluctuation in electronegativity, the lower the 
remanence value, indicating a significant negative correlation. The 
trends for coercivity are entirely opposite to those for remanence. High 
electronegativity variance corresponds to high coercivity values, while 
the weighted sum and weighted difference of electronegativity show a 
negative correlation with coercivity. As for the maximum energy prod-
uct, while a clear positive or negative correlation is not distinctly 
observed, it is noticeable that there are clear predominant regions 
within the maximum magnetic energy product area. Specifically, high 
values of maximum magnetic energy product are observed when ENW-

sum lies within the range of approximately 1.75 to 1.79, and ENWdif is 
within the range of 1.4 to 1.6. Similarly, prominent intervals are found 
within the variances; when ENWSvar is within the range of 0.04 to 0.06, 
and ENWDvar is within the range of 0.06 to 0.14, the maximum magnetic 
energy product demonstrates high values.

These results show a distinct correlation between the electronega-
tivity of REFeB magnets and their magnetic performance. For different 
magnetic properties, the electronegativity parameters of REFeB magnets 

exhibit different patterns. As the essence of machine learning is to 
extract patterns and relationships from data, direct interpretations 
cannot be directly obtained from the machine learning model. However, 
the virtual datasets derived from the predictive results clearly reveal the 
underlying correlation between the electronegativity parameters and 
the magnetic properties of REFeB. The electronegativity parameters we 
designed are based on the chemical composition of the compounds. To 
some extent, these electronegativity parameters can serve as proxies for 
the electronic environment of atoms within the compound, as well as the 
magnetic interactions between them, all of which ultimately influence 
the macroscopic magnetic properties of the material. This observation 
not only offers a new perspective for the mechanistic exploration of 
REFeB magnets, but also suggests that electronegativity could serve as 
an indicator for optimizing their composition and performance.

3.2.2. Composition optimization

3.2.2.1. Prediction results. Given the uneven distribution of rare earth 
elements, designing REFeB magnets that incorporate high-abundance 
elements while maintaining high magnetic properties is essential. La 
and Ce, among the most abundant rare earth elements in the Earth’s 
crust with concentrations of 63 ppm and 31 ppm respectively [36], offer 
a more economical alternative to PrNd elements. We utilized the 
established machine learning models in Section 3.2 together with veri-
fication experiments to investigate the correlation between rare-earth 
content (PrNd, La, Ce) and the magnetic performance of the represen-
tative composition ((Pr,Nd)xLayCe1-x-y)12Fe82B6. Our objective was to 
identify compositions with high proportions of high-abundance rare 
earth elements while maintaining optimal magnetic performance, tar-
geting an efficient balance between performance and cost. Using a step 

Fig. 6. Parallel coordinate plot demonstrating the relationship between (a) Hcj (b) Br (c) (BH)max and electronegativity features. Each curve represents an individual 
data sample, with its intersections on the vertical axes indicating the corresponding values of each variable. The color distribution of the curves reflects the 
magnitude of the associated magnetic property, allowing the correlation between magnetic properties and electronegativity features to be visually interpreted.
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size of 2.5 % for x and y, and setting upper and lower limits at 0 % and 
100 % respectively, we created a virtual compositional space comprising 
825 data points, which represent the ratios of PrNd, La, and Ce elements 
in the rare earth composition of (PrNd, La, Ce)-Fe-B magnets. To focus 
on the effect of substituting high-abundance rare earth elements, the 
concentrations of other elements remain constant at their respective 
modal values, which corresponds to the virtual compound ((Pr, 
Nd)xLayCe1-x-y)12Fe82B6.

Fig. 7 illustrates the distinct correlations between the magnetic 
performance of (PrNdxLayCe1-x-y)12Fe82B6 and its rare-earth element 
content. It is evident that different magnetic properties exhibit distinct 
behaviors. For coercivity, since the significantly lower intrinsic mag-
netic properties of the La2Fe14B and Ce2Fe14B compared to Pr2Fe14B and 
Nd2Fe14B [37], the intrinsic coercivity of the magnet decreases notice-
ably as the proportion of La and Ce increases. The contour distribution in 
the figure indicates that the predominant factor influencing the varia-
tion in coercivity is the proportion of PrNd elements among the rare 
earth elements (Fig. 7a), a higher proportion of PrNd is associated with 
higher coercivity values, as indicated by the red-colored region. When 
the proportion of PrNd exceeds 75 %, the predicted coercivity remains 
above 650 kA/m. Meanwhile, both La and Ce exhibit detrimental effects 
on coercivity, increased substitution of either element leads to a general 
decline in coercivity. The remanence map shows significantly larger 
red-color regions (Fig.7b), primarily due to the effects of La. While an 
increase in Ce also causes a gentle decrease in remanence, La’s impact is 
even less severe. This difference stems from the higher saturation 
magnetization of La2Fe14B compared to Ce2Fe14B, making the substi-
tution of PrNd with La more effective for remanence than using Ce. Our 
ensemble model accurately captures these nuances, resulting in different 
predictions for the substitution effects of La and Ce. Previous studies 

have revealed that synergistic interactions between La and Ce in REFeB 
magnets can facilitate the transition of Ce to magnetic valence state and 
restrict the formation of detrimental phases like CeFe2, thereby pro-
moting enhanced remanence [38–40]. The predicted results from our 
model identified this effect, showing higher values of remanence when 
La replaces Ce (Fig. 7b). Meanwhile, the relatively high remanence 
values in the high La substitution areas may also be due to this effect. 
However, from an industrial application standpoint, magnets must 
exhibit optimal overall magnetic performance, encompassing high 
levels of coercivity, remanence, and maximum energy product concur-
rently. Analysis of the predicted results of maximum energy product 
reveals that for (PrNdxLayCe1-x-y)12Fe82B6 magnets, the region with a 
value higher than 100 kJ/m3, falls within approximately 25 % to 40 % 
La, <20 % Ce, and PrNd ranging from 55 % to 75 % (Fig. 7c), which is 
comparable to the areas with very small La and Ce content. Moreover, 
within this special compositional window (Region B in Fig. 8a), the 
magnet demonstrates maximum energy product values exceeding 103 
kJ/m3 while maintaining substantial levels of coercivity (exceeding 469 
kA/m) and remanence (exceeding 0.870 T), providing an optimal 
composition area for high LaCe substituted magnets with good overall 
magnetic performance. Generally, an optimal (BH)max with high value 
needs both coercivity and remanence simultaneously have sufficient 
high values. However, the behaviors of coercivity and remanence usu-
ally are competitive in high-abundancy rare earth substituted REFeB 
magnet, leading to a serious challenge in optimizing their magnetic 
performance. This predicted optimal composition area indicates that the 
opposing behaviors of coercivity and remanence under certain condi-
tions can also result in an optimized region with a balanced magnetic 
performance for LaCe substituted magnets.

To verify the unique nature of this newly-discovered compositional 

Fig. 7. Ternary contour plots of (a) Hcj (b)Br (c) (BH)max for (PrNdxLayCe1-x-y)12Fe82B6 magnets.

Z. Wang et al.                                                                                                                                                                                                                                   Acta Materialia 292 (2025) 121031 

8 



area, we further calculated the electronegativity parameters for Region 
B (Supplementary Information, Table S4). The result showed that the 
electronegativity parameters in Region B fall within the optimal ranges 
associated with a high (BH)max (ENWsum ranges from 1.75 to 1.79, 
ENWdif from 1.4 to 1.6, ENWSvar between 0.04 and 0.06, and ENWDvar 
from 0.06 to 0.14), well consistent with the patterns observed in Fig. 6. 
This result confirms that Region B presents promising magnetic char-
acteristics, warranting further exploration.

3.2.2.2. Experimental verification. To further validate the accuracy of 
our model predictions, especially for Region B (Fig. 8a), verification 
experiments were conducted. Seven compositions were selected for 
verifying, with a focus on five compositions located within Region B in 
Fig. 8a (sample1 to 5) and two compositions (sample6 and sample7) 
dispersed outside (Fig. 8a). The experimental measurements show that 

all seven samples achieve prediction accuracies of over 90 %, as pre-
sented in Fig. 8b and c and Table 2. Here, the prediction accuracy is 
defined as 1 − |Mexp − Mpred|/Mexp, where Mexp represents the experi-
mental value of the samples’ magnetic properties, and Mpred represents 
the predicted value. Additional characterization measurement results 
(XRD patterns and Hysteresis loops) for the validation samples are 
provided in the supplementary materials.

To account for potential errors introduced during experimental 
measurements, we assessed the magnetic properties of five independent 
samples for each composition under identical conditions. The verifica-
tion results show that the prediction models achieved an accuracy 
exceeding 90 % for Br, Hcj, and (BH)max across seven randomly selected 
compositions, demonstrating the model’s high reliability in predicting 
magnetic properties. Notably, for samples within Region B (Sample 
1–Sample 5), the model demonstrated even higher predictive accuracy, 

Fig. 8. (a)The high magnetic properties region for ((Pr,Nd)xLayCe1-x-y)12Fe82B6. (b) Demagnetization curves of selected samples used for verification experiments (c) 
Comparison of predicted and experimental values for the verification experiments, the mean values of these measurements were taken as the final results for 
verification experiments, the error bars are calculated from the standard deviation of the magnetic properties of five different samples of the same composition (d) 
Box plot of relative cost reduction and relative magnetic performance, the upper and lower boundaries of the box represent the interquartile range, the line inside the 
box represents the median, and the whiskers extending from the box represent the minimum and maximum values.

Table 2 
Verifying experiment results for ((Pr,Nd)xLayCe1-x-y)12Fe82B6.

Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7

Composition x = 0.575, 
y = 0.275

x = 0.6, 
y = 0.3

x = 0.575, 
y = 0.225

x = 0.625 
y = 0.275

x = 0.7 
y = 0.2

x = 0.1, 
y = 0.1

x = 0.9, 
y = 0.05

Predicted Br (T) 0.871 0.878 0.877 0.870 0.873 0.716 0.897
Experimental Br (T) 0.900±0.025 0.919±0.027 0.827±0.010 0.877±0.009 0.873±0.015 0.713±0.027 0.885±0.031
Br accuracy 97 % 96 % 94 % 99 % 100 % 99 % 99 %
Predicted Hcj (kA/m) 544 582 542 560 583 290 819
Experimental Hcj (kA/m) 539±25.5 560±14.3 544±12.7 551±10.3 632±10.3 289±7.96 745±19.9
Hcj accuracy 99 % 96 % 99 % 98 % 92 % 99 % 90 %
Predicted (BH)max (kJ/m3) 113 117 109 116 108 58.3 116
Experimental (BH)max (kJ/m3) 116±3.82 121±4.93 107±3.26 115±3.50 113±4.46 61.1 ± 2.79 123±6.29
(BH)max accuracy 97 % 97 % 98 % 99 % 96 % 95 % 94 %
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exceeding 92 %. Furthermore, the magnetic property predictions for the 
majority of the samples reached accuracies above 95 %. The predictions 
for the magnetic energy product exhibited the highest accuracy, while 
the predictive accuracy for coercivity was slightly lower, though still 
exceeding 90 %, which validates the accuracy and robustness of our 
machine learning models.

3.2.2.3. Cost-performance analysis. Verification experiments confirm 
the reliability of our machine learning models’ predictions, particularly 
highlighting the favorable overall magnetic performance of Region B 
(Fig. 8a). The results indicate that Region B, characterized by relatively 
high proportions of La and Ce, holds the potential for industrial valuable 
and cost-effective magnets. Given these promising findings, we con-
ducted a further cost-effectiveness analysis for this specific region.

To comprehensively analyze the relationship between the overall 
magnetic performance and material cost of magnets and identify com-
positions with optimal cost-effectiveness, we used the product of three 
magnetic properties (Hcj × Br × (BH)max) to evaluate the overall mag-
netic performance of magnets. This evaluation provides a more intuitive 
representation of the variations in the three magnetic properties across 
different compositions and has also been employed in previous studies 
[41]. The cost of the magnets was calculated based on the market prices 
of La at 3426 USD/ton, Ce at 3701 USD/ton, and PrNd at 96,860 
USD/ton [42] with the costs of Fe and B being negligible. As a bench-
mark for comparison, we selected the magnetic performance and cost of 
(Pr,Nd)12Fe82B6 (without La or Ce substitution).To further validate the 
reliability of the cost-effectiveness analysis, we further validated the 
benchmark composition through verifying experiment. The accuracy of 
the model-predicted magnetic properties compared to the experimental 
results remains at 90 % for the benchmark composition (Supplementary 
Material, Table S7, Fig. S6). Based on the obtained results shown in 
Fig. 7, we computed the relative magnetic performance (based on our 
predictive results) and relative cost of magnets in Region B, bench-
marked against (Pr,Nd)12Fe82B6. The results were statistically analyzed 
and visualized in Fig. 8d In Region B, the high proportion of abundant 
rare earth elements La and Ce leads to a significant reduction in the 
material costs of the magnets, achieving a relative cost reduction of 
approximately 30–45 %. However, this reduction in cost is accompanied 
by a decrease in overall magnetic performance. When the relative cost 
reduction exceeds 35 %, the overall magnetic performance falls below 
80 %. But within the range of a 35 % cost reduction, there are some 
compositions that maintain good overall magnetic performance. Spe-
cifically, for the cost reduction below 30 %, the highest relative mag-
netic performance achieved is 80.7 % of the benchmark magnet. This 
indicates promising directions for cost-effective compositions. The most 
notable finding is that a magnet with the composition (Pr,Nd)8.1La3.6-

Ce0.3Fe82B6, predicted by our machine learning models, exhibits the 
highest overall magnetic performance, reaching 86.4 % of the bench-
mark with Hcj = 660 kA/m, Br = 0.880 T, and (BH)max = 128 kJ/m3, 
while also achieving a 31.3 % reduction in cost.

Further search of cost-effective compositions targeting ones retain-
ing >80 % of overall magnetic performance yielded three other com-
positions based on our predictive results: (Pr,Nd)8.1La3.9Fe82B6, (Pr, 
Nd)8.4La3.6Fe82B6 and (Pr,Nd)8.1La3.3Ce0.6Fe82B6. Compared to the 
composition without La and Ce substitution, their predicted magnetic 
performances were retained at 80.8 % (Hcj = 614 kA/m, Br = 0.885 T, 
(BH)max = 128 kJ/m3), 80.7 % (Hcj = 633 kA/m, Br = 0.878 T, (BH)max 
= 125 kJ/m3), and 81.7 % (Hcj = 638 kA/m, Br = 0.875 T, (BH)max =

126 kJ/m3), respectively, while reducing the cost by 31.4 %, 28.9 % and 
31.3 %, respectively. These compositions exhibit a commendable bal-
ance of cost-efficiency and magnetic performance, achieving a sub-
stantial substitution of abundant rare earth elements while retaining 
favorable values of coercivity, remanence, and maximum energy prod-
uct, which is of significance for the balanced utilization of rare earth 
elements and the practical application of REFeB magnets. Moreover, 

these results highlight the efficacy of our machine learning approach in 
developing cost-effective REFeB permanent magnets and demonstrate 
its potential to advance material discovery and optimization.

4. Conclusion

In this study, machine learning techniques were employed to opti-
mize the composition design of melt-spun high-abundance REFeB (RE =
PrNd, La, Ce) permanent magnets, comprehensively encompassing three 
magnetic properties of Hcj, Br and (BH)max. Sixteen mainstream regres-
sion models were screened and then optimized using three heuristic 
optimization algorithms (GA, PSO, DE). To enhance the models’ 
generalization ability, the ensemble strategy was further introduced, 
attaining correlation coefficients (R2) of 0.927 for Hcj, 0.932 for Br, and 
0.907 for (BH)max.

Using the established ensemble models, we predicted the magnetic 
performance of REFeB permanent magnets, focusing on the impact of 
elemental electronegativity and chemical composition. Distinct corre-
lations between electronegativity parameters and magnetic perfor-
mance were identified, indicating that the statistic electronegativity 
might be a good indicator for the magnetic performance of REFeB ma-
terials. Furthermore, the impact of rare earth element content on the 
magnetic performance of ((Pr,Nd)xLayCe1-x-y)12Fe82B6 was investigated 
based on the ensemble models, with a specific focus on substituting 
high-abundance rare earth elements La and Ce for PrNd. We discovered 
a special composition region with optimal overall magnetic perfor-
mance, with La and Ce ratios reaching up to 40 % and 20 %, respec-
tively. Verification experiments showed that our models’ predictions 
achieved an accuracy rate of over 90 %, validating the excellent overall 
magnetic performance of this region. A cost-effectiveness analysis was 
then conducted for this newly-discovered region, and compositions with 
high cost-effectiveness were identified. Among them, (Pr,Nd)8.1La3.6-

Ce0.3Fe82B6 achieves a 31.3 % cost reduction while retaining 86.4 % of 
the overall magnetic performance compared to the corresponding 
composition without La/Ce substitution. Three other compositions in 
this region were also identified, achieving approximately 30 % cost 
reduction while maintaining over 80 % of the magnetic performance: 
(Pr,Nd)8.1La3.9Fe82B6, (Pr,Nd)8.4La3.6Fe82B6 and (Pr,Nd)8.1La3.3Ce0.6-

Fe82B6. These findings not only are conducive to the optimization of 
REFeB magnet compositions, but also demonstrate the enormous po-
tential of machine learning approach in the design and development of 
high-performance and cost-effective REFeB permanent magnets, which 
holds significant practical significance. The presented ensemble ma-
chine learning method offers a swift and cost-effective approach for 
optimizing high-abundant REFeB permanent magnets.

CRediT authorship contribution statement

Zheng Wang: Writing – original draft, Methodology, Investigation, 
Data curation. Shiyi Zhang: Validation, Investigation. Jing Wang: 
Writing – review & editing, Supervision, Funding acquisition, Concep-
tualization. Ming Zhang: Investigation. Yunzhong Chen: Resources. 
Baohe Li: Validation. Tongyun Zhao: Resources. Minggang Zhu: 
Writing – review & editing, Supervision. Fengxia Hu: Writing – review 
& editing, Resources, Funding acquisition. Baogen Shen: Supervision, 
Resources, Funding acquisition. Wei Li: Writing – review & editing, 
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Z. Wang et al.                                                                                                                                                                                                                                   Acta Materialia 292 (2025) 121031 

10 



Acknowledgements

This work was supported by the National Key Research and Devel-
opment Program of China (grant nos. 2022YFB3505201, 
2023YFA1406003), the High-quality Development Special Funds Pro-
gram Ministry of Industry and Information Technology (Grant No. 
TC220H06G), the National Natural Sciences Foundation of China (grant 
nos. 52088101, 92263202, U23A20550, 22361132534), and the Stra-
tegic Priority Research Program (B) of the Chinese Academy of Sciences 
(XDB33030200).

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.actamat.2025.121031.

References

[1] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, New material for 
permanent magnets on a base of Nd and Fe, J. Appl. Phys. 55 (6) (1984) 
2083–2087.

[2] J. Coey, Perspective and prospects for rare earth permanent magnets, Engineering 
6 (2) (2020) 119–131.

[3] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S. Sankar, J.P. Liu, Magnetic 
materials and devices for the 21st century: stronger, lighter, and more energy 
efficient, Adv. Mater. 23 (7) (2011) 821–842.

[4] H. Sepehri-Amin, Y. Une, T. Ohkubo, K. Hono, M. Sagawa, Microstructure of fine- 
grained Nd–Fe–B sintered magnets with high coercivity, Scr. Mater. 65 (5) (2011) 
396–399.
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