Magnetic properties and magnetocaloric effects in R3Ni2 (R=Ho and Er) compounds
Q. Y. Dong, J. Chen, J. Shen, J. R. Sun, and B. G. Shen

Citation: Appl. Phys. Lett. 99, 132504 (2011); doi: 10.1063/1.3643142
View online: http://dx.doi.org/10.1063/1.3643142
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i13
Published by the American Institute of Physics.

Related Articles
Magnetocaloric effect and its implementation in critical behavior study of Mn4FeGe3xSix intermetallic compounds
J. Appl. Phys. 110, 113915 (2011)
Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite
Cooling field and temperature dependence on training effect in NiFe2O4-NiO nanogranular system
J. Appl. Phys. 110, 103902 (2011)
Composition dependent-magnetocaloric effect and low room-temperature coefficient of resistivity study of iron-based antiperovskite compounds Sn1xGaxCF3 (0x1.0)
Effect of Fe substitution on magnetic and magnetocaloric effect in Gd(Co1xFex)2B2 compounds
J. Appl. Phys. 110, 083915 (2011)

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Magnetic properties and magnetocaloric effects in $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds

Q. Y. Dong, J. Chen, J. Shen, J. R. Sun, and B. G. Shen

1Department of Physics, Capital Normal University, Beijing 100048, People’s Republic of China
2State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

(Received 7 July 2011; accepted 3 September 2011; published online 26 September 2011)

Magnetic and magnetocaloric properties of $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds have been investigated. Both Ho$_3\mathrm{Ni}_2$ and Er$_3\mathrm{Ni}_2$ compounds undergo two successive phase transitions: spin reorientation transition and second-order ferromagnetic-paramagnetic transition. The maximal values of magnetic entropy change are achieved to be 21.7 J kg$^{-1}$ K$^{-1}$ for Ho$_3\mathrm{Ni}_2$ and 19.5 J kg$^{-1}$ K$^{-1}$ for Er$_3\mathrm{Ni}_2$ for a field change of 0-5 T. A large refrigerant capacity (RC) of 496 J kg$^{-1}$ in the composite material is also obtained. Large reversible magnetocaloric effect and RC indicate the potentiality of $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds as candidates for low-temperature magnetic refrigerant. © 2011 American Institute of Physics. [doi:10.1063/1.3643142]

Magnetic refrigeration based on magnetocaloric effect (MCE) of solid-state working substances has been widely employed in ultra-low temperature. Recently, it has been anticipated to be a promising alternative technology available at high temperature and even room temperature, due to its higher energy-efficient and environment-friendly features as compared with the common gas-compression refrigeration technology that is used currently. Large isothermal magnetic entropy change compared with the common gas-compression refrigeration technology that is used currently. Large isothermal magnetic entropy change is anticipated to be a promising alternative technology available in the near future.

T_N and T_C are the Curie temperature for the refrigeration technological application. How- ever, the increased magnetic moment in rare earth sublattices has been confirmed. Moreover, HoNi and ErNi compounds have different arrangement of moments. In one word, $R_3\mathrm{Ni}$ and $R\mathrm{Ni}$ series with $R=\text{Ho, Er}$ have complicated magnetic structures.

The $R_3\mathrm{Ni}_2$ series ($R=\text{Ho and Er}$) are the only kind of compounds between $R_2\mathrm{Ni}$ and $R\mathrm{Ni}$ series with $R=\text{Ho, Er}$. The crystalline structure of Er$_3\mathrm{Ni}_2$ is rhomb-centered rhombohedral (space group R3$\overline{3}$). Er atoms occupy three nonequivalent sites, 3b site for Er(1), 6c site for Er(2), and 18f site for Er(3). Although Ni atoms also occupy 18f site, their positions are different from those of Er(3). The high-temperature phase of Ho$_3\mathrm{Ni}_2$ is isotypic with Er$_3\mathrm{Ni}_2$. Based on their complicated crystalline structure, Ho$_3\mathrm{Ni}_2$ and Er$_3\mathrm{Ni}_2$ compounds may have interesting magnetic structure. Large MCEs in them can be also expected due to the large rare earth content. Nevertheless, no reports on magnetic properties and MCEs of $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds are found up to now. So in this paper, we present a study on the magnetic properties and MCEs of $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds.

The samples were prepared by arc melting the constituent elements with the purity better than 99.9% in high-purity argon atmosphere. The obtained ingots were sealed in a high-vacuum quartz tube, annealed at 1023 K for 3 days for Er$_3\mathrm{Ni}_2$ and 873 K for 30 days for Ho$_3\mathrm{Ni}_2$, and then quenched into liquid nitrogen. Powder x-ray diffractometer was performed to characterize the crystal structure of the samples. Magnetic measurements were carried out on a commercial MPMS-7 superconducting quantum interference device magnetometer. Heat capacity was measured by using a commercial PPMS-14H physical property measurement system.

Figure 1 shows the Rietveld refined powder x-ray diffraction patterns of $R_3\mathrm{Ni}_2$ ($R=\text{Ho and Er}$) compounds. Almost all the diffraction peaks can be indexed to a rhombohedral structure. The lattice parameters obtained from the refinement are $a = 8.523(5)$ Å and $c = 15.758(6)$ Å for Ho$_3\mathrm{Ni}_2$ compound, $a = 8.486(0)$ Å and $c = 15.704(1)$ Å for Er$_3\mathrm{Ni}_2$ compound, which almost accord with the previous reports.15,16

Electronic mail: happilylaugh746@gmail.com.
The low-field temperature-dependence of magnetization has been measured in order to determine magnetic state, phase transition temperature, and the nature of the transition. Figures 2(a) and 2(b) display the zero-field cooling (ZFC) and field-cooling (FC) magnetization curves of R_3Ni_2 ($R=Ho$ and Er) compounds under a field of $0.01 T$, respectively. It is found that there are two successive magnetic transitions in the $M-T$ curves for these compounds. For Er_3Ni_2 compound (see Fig. 2(b)), the anomaly at low temperature may be a spin-reorientation (SR) transition. The SR transition temperature, T_{SR}, is decided to be $\sim 12 K$. The authentic evidence needs to be supplied by neutron diffraction study in the future work. The transition at higher temperature corresponds to a change from FM to paramagnetic (PM) state with increasing temperature. The Curie temperature, T_C, corresponding to the maximum slope of $M-T$ curve under a field of $0.01 T$, is determined to be $17 K$. The reciprocal magnetic susceptibility χ^{-1} versus temperature for Er_3Ni_2 under a field of $2 T$ is shown in the inset of Fig. 2(b). The magnetic susceptibility above $50 K$ obeys the Curie-Weiss law, and a positive PM Curie temperature is obtained, further confirming that a FM-PM phase transition takes place around T_C for Er_3Ni_2. It can also be seen from Fig. 2(b) that the ZFC and FC curves are completely reversible around T_C, which is a characteristic of a second-order transition. Ho_3Ni_2 compound shows similar phenomena, as shown in Fig. 2(a) and its inset. T_{SR} and T_C are decided to be $10 K$ and $36 K$, respectively.

Given that Ni atoms are nonmagnetic in R_3Ni_2 ($R=Ho$ and Er) compounds, the effective magnetic moments per unit cell of R_3Ni_2 ($R=Ho$ and Er) compounds, evaluated from the slope of $1/\chi$ in the PM region under the field of $2 T$ (see the insets of Figs. 2(a) and 2(b)), equal to $10.9 \mu_B$ and $9.9 \mu_B$, which are close to the free ion values ($10.6 \mu_B$ for Ho ion and $9.5 \mu_B$ for Er ion), respectively. This illustrates that the hypothesis about the non-magnetism of Ni atoms in R_3Ni_2 ($R=Ho$ and Er) compounds is correct, which is similar to the case in R_2Ni and RNI compounds. The PM Curie temperatures obtained by fitting the susceptibility data under the field of $2 T$ are $33 K$ and $18 K$ for Ho_3Ni_2 and Er_3Ni_2 compounds, respectively.

The isothermal magnetization curves as a function of magnetic field for R_3Ni_2 ($R=Ho$ and Er) compounds were measured in applied fields of up to $5 T$ in a wide temperature range. Fig. 3(a) shows the typical magnetization curves of Ho_3Ni_2 in the temperature range of $5-41 K$. It can be seen from Fig. 3(a) that there is a considerable difference in the $M-H$ characteristics in different temperature ranges. The Ho_3Ni_2 compound shows a metamagnetic transition at about $3.2 T$ below $17 K$, whereas it shows typical FM nature in the temperature range of $17-35 K$. The selective isothermal magnetization curves of Er_3Ni_2 compound in the temperature range of $5-24 K$ are presented in Fig. 3(b). One can find that the Er_3Ni_2 exhibits typical FM nature at temperatures lower than T_C. The Arrott plots around T_C for R_3Ni_2 ($R=Ho$ and Er) compounds are shown in the insets of Figs. 3(a) and 3(b), respectively. The positive slope of the Arrott plots confirms a characteristic of the second-order FM-PM transition, which accords well with the case mentioned based on Fig. 2 where thermal hysteresis around T_C is absent.

The magnetic entropy change ΔS of R_3Ni_2 ($R=Ho$ and Er) compounds can be calculated from isothermal magnetization data by using Maxwell relation $\Delta S = \int_H^L (\partial M/\partial T)_{H} dH$. Figure 4(a) displays the values of ΔS for R_3Ni_2 ($R=Ho$ and Er) compounds as a function of temperature for the field changes of $0-2 T$ and $0-5 T$. A broad cusp around T_{SR} is observed in each $\Delta S-T$ curve, which is in accord with the results of magnetic and specific capacity measurements. Another peak center at T_C in every $\Delta S-T$ curve. For a field change of $0-5 T$, the peak values of ΔS for Ho_3Ni_2 and Er_3Ni_2 reach to $21.7 J kg^{-1} K^{-1}$ and $19.5 J kg^{-1} K^{-1}$, respectively, which are comparable with or much larger than those of some magnetic refrigerant materials with a similar phase temperature, such as DyNi$_2$ (21.3 J kg$^{-1}$ K$^{-1}$ at 20 K), DyCoAl (16.3 J kg$^{-1}$ K$^{-1}$ at 37 K), HoNi (14.5 J kg$^{-1}$ K$^{-1}$ at 36 K), TbCoC$_2$ (15.3 J kg$^{-1}$ K$^{-1}$ at 28 K), DyCuAl (20.4 J kg$^{-1}$ K$^{-1}$ at 28 K), and ErGa (21.3 J kg$^{-1}$ K$^{-1}$ at 30 K).

One can find from Fig. 4(a) that the peak values of ΔS around T_C for Ho_3Ni_2 and Er_3Ni_2 compounds approximately equal each other and the corresponding temperature span is only $17 K$. So when Ho_3Ni_2 and Er_3Ni_2 compounds with the mass ratio of 2:3 are mixed together, the best quasi-platform
of ΔS is observed. The inset of Fig. 4(a) displays the temperature dependence of ΔS for the composite material for a field change of 0-5 T. A large RC value of 496 J kg$^{-1}$ is thus obtained, which is calculated by numerically integrating the area under the ΔS-T curve, with the temperatures at half maximum of the peak used as the integration limits.\(^2\) The large RC attributes to the appreciably large values of ΔS around T_C for $R_3Ni_2 (R = Ho$ and Er) compounds.

In order to get better comprehension of the application potential of $R_3Ni_2 (R = Ho$ and Er) compounds, we have also calculated the MCE in terms of adiabatic temperature change ΔT_{ad} based on the data of Figs. 4(a) and 4(b) by using

$$\Delta T_{ad} = -\Delta S(TH_0) \times \frac{1}{C_p(TH_0)},$$

where $C_p(TH_0)$ is zero-field specific heat. The inset of Fig. 4(b) shows the temperature dependences of ΔT_{ad} of the Ho_3Ni_2 and Er_3Ni_2 compounds for field changes of 0-2 T and 0-5 T. The maximum values of ΔT_{ad} are found to be 3.2 and 7.0 K for Ho_3Ni_2, 3.3 and 5.9 K for Er_3Ni_2, respectively. They are comparable well with those of $DyNi_2$, $DyCuAl$, and $DyNiAl$.\(^4\) In summary, from the magnetization and heat capacity measurements, it is found that $R_3Ni_2 (R = Ho$ and Er) compounds undergo two successive phase transitions at low temperatures. Large ΔS of 21.7 J kg$^{-1}$ K$^{-1}$ for Ho_3Ni_2 and 19.5 J kg$^{-1}$ K$^{-1}$ for Er_3Ni_2 are obtained for a field change of 0-5 T. The maximum values of ΔT_{ad} for Ho_3Ni_2 and Er_3Ni_2 reach to 7.0 and 5.9 K for the same field change, respectively. For the composite material formed by Ho_3Ni_2 and Er_3Ni_2 with the mass ratio of 2:3, a large RC of 496 J kg$^{-1}$ is achieved for a field change of 0-5 T. The excellent magnetocaloric properties indicate the applicability of $R_3Ni_2 (R = Ho$ and Er) compounds to the liquefaction of hydrogen gas.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 50731007, 11004204 and 51001077), the Hi-Tech Research and Development program of China, and the Knowledge Innovation Project of the Chinese Academy of Sciences.

\(^1\)W. F. Giauque and D. P. MacDougall, Phys. Rev. 43, 0768 (1933).