Magnetic entropy change and large refrigerant capacity of Ce$_6$Ni$_2$Si$_3$-type GdCoSiGe compound

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Chinese Phys. B 20 027501

(http://iopscience.iop.org/1674-1056/20/2/027501)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 159.226.35.189
The article was downloaded on 28/03/2011 at 10:57

Please note that terms and conditions apply.
Magnetic entropy change and large refrigerant capacity of Ce$_6$Ni$_2$Si$_3$-type GdCoSiGe compound

Shen Jun(沈 俊)a, Zhang Hu(张 虎)b, and Wu Jian-Feng(吴剑峰)a

aKey Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
bState Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 18 August 2010; revised manuscript received 28 September 2010)

Magnetic entropy change (ΔS_M), and refrigerant capacity (RC) of Ce$_6$Ni$_2$Si$_3$-type Gd$_5$Co$_{1.6}$Si$_{2.5}$Ge$_{0.5}$ compounds have been investigated. The Gd$_5$Co$_{1.6}$Si$_{2.5}$Ge$_{0.5}$ undergoes a reversible second-order phase transition at the Curie temperature T_C = 296 K. The high saturation magnetization leads to a large ΔS_M and the maximal value of ΔS_M is found to be 5.9 J/kg·K around T_C for a field change of 0–5 T. A broad distribution of the ΔS_M peak is observed and the full width at half maximum of the ΔS_M peak is about 101 K under a magnetic field of 5 T. The large RC is found around T_C and its value is 424 J/kg.

Keywords: Gd$_5$Co$_{1.6}$Si$_{2.5}$Ge$_{0.5}$ compound, magnetocaloric effect, refrigerant capacity

PACS: 75.30.Sg, 75.50.Cc

DOI: 10.1088/1674-1056/20/2/027501

1. Introduction

In recent years, much attention has been paid to magnetic materials with the giant magnetocaloric effect (MCE) due to their potential application as magnetic refrigerants.$^{[1−3]}$ Large MCE around the transition temperatures has been found in many materials with a first-order phase transition, such as Gd$_5$Si$_2$Ge$_2$, La(Fe, Si)$_{13}$, MnAs$_{1−x}$Sb$_x$, MnFeP$_{1−x}$As$_x$, NiMnGa, etc.$^{[4−10]}$ Although, these materials have usually large magnetic entropy change (ΔS_M), magnetic hysteresis loss happens inevitably, which greatly reduce the actual refrigerant capacity (RC). Therefore, it is important to explore advanced magnetic refrigerant materials which possess not only large reversible ΔS_M but also considerable RC. Recently, there has been a great deal of interest in the study of MCE of ferromagnetic materials that experience a second-order phase transition because of their high RC. Generally, heavy rare earth elements and their compounds are considered to be the best candidate materials for finding a large MCE due to their high magnetic moments. Gd metal has the highest MCE among the second-order phase transition materials and it shows a maximum ΔS_M of 9.7 J/kg·K at T_C = 293 K under a field change 0–5 T.$^{[11,12]}$ Recently, a ferromagnetic silicide Gd$_5$Co$_{1.6}$Si$_3$ derived from the Ce$_6$Ni$_2$Si$_3$-type structure was reported.$^{[13,14]}$ The compound exhibits a good MCE and a reversible second-order magnetic transition at room temperature.$^{[15−17]}$ In this paper, we study the magnetic properties and magnetocaloric effects of Gd$_5$Co$_{1.6}$Si$_{2.5}$Ge$_{0.5}$ compound. Room-temperature maximum ΔS_M of 5.9 J/kg·K and large RC of 424 J/kg are observed.

2. Experiments

Polycrystalline Gd$_5$Co$_{1.6}$Si$_{2.5}$Ge$_{0.5}$ was prepared by arc melting in a high-purity argon atmosphere. The purities of starting materials were better than 99.9%. The sample was turned over and remelted several times to ensure its homogeneity. Ingot obtained by arc melting was subsequently wrapped by molybdenum foil, sealed in a quartz tube of high vacuum, annealed at 1073 K for 30 days and then quenched to room temperature. The crystal structure of the samples was characterized using power x-ray diffraction (XRD) with Cu Kα radiation. Magnetizations were measured as functions of both temperature and field.
magnetic field by using a superconducting quantum interference device (SQUID) magnetometer.

3. Results and discussion

Figure 1 displays the room-temperature powder XRD pattern of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$. All the diffraction peaks can be indexed in a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type crystal structure (space group $P6_3/m$) except some smaller peaks (centred at about 23.98°, 25.02° and 36.40°) that indicate the existence of a minor phase other than the Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compound. The lattice parameters are determined to be $a = 1.1761(9)$ nm and $c = 0.4161(3)$ nm by using the Rietveld refinement method, which are slightly larger than those of Gd$_{6}$Co$_{1.67}$Si$_{3}$[15] because of the atomic radius of Ge is larger than that of Si.

The temperature-dependent magnetization was measured in both zero field-cooled (ZFC) and field-cooled (FC) processes in order to determine the thermal hysteresis and the magnetic transition temperature. Figure 2(a) shows the thermomagnetic curves M–T of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ measured under an external magnetic field of 0.05 T. The sample was cooled down to 5 K in a zero field, the heating curve from 5 K to 300 K was measured first in a magnetic field of 0.05 T, then the cooling curve from 300 K to 5 K was measured in the same field. It is found that the M–T curves show a reversible behaviour in heating and cooling processes at the Curie temperature T_C, but without being accompanied by thermal hysteresis, indicating a nature of the second-order phase transition. It can be seen from Fig. 2(a) that Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ undergoes a magnetic transition from ferromagnetic (FM) to paramagnetic (PM) state, and its T_C is determined to be 296 K by evaluating the minimum value of the dM/dT on the ZFC M–T curve under a field of 0.05 T, which is nearly as large as that of pure Gd.[11,12] Figure 2(b) shows the temperature dependences of magnetization of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ in different magnetic fields. The magnetization exhibits a continuous change around T_C in different magnetic fields and T_C significantly increases with increasing magnetic field. The temperature dependence of the magnetization exhibits a rapid decrease at T_C, even at higher magnetic fields, therefore, a large ΔS_M may be expected of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$.

Figure 3(a) shows the magnetic hysteresis loop at 5 K. One can see from the figure that the hysteresis loop of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ exhibits a soft magnetic behaviour, because Gd has no orbital momentum with relatively small magnetocrystalline anisotropy. Figure 3(b) shows the field dependence of magnetization of Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ at 5 K. The magnetic moment per f.u. in an external field of 13 T is found to be 42.3 μ_B. Thus, the magnetic moment of Gd atom is 7.06 μ_B, which is very close to the value of a free Gd$^{3+}$ ion (7 μ_B).
These results mean that the Co atoms are non-magnetic in the Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compound as observed in R_6Co$_{1.67}$Si$_3$ (R = Nd and Tb).\cite{14}

The isothermal magnetization curves of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ were measured from 0 T up to 5 T around T_C in order to determine the ΔS_M. The sweep rate of the field was quite slow to ensure that the M–H curves could be recorded in an isothermal process. Figure 4(a) shows the magnetization isotherms of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ around T_C in a temperature range of 150–350 K with a temperature step of 5 K. It can be seen from Fig. 4(a) that the magnetization is smoothly saturated and its magnitude gradually decreases with the increase of temperature below T_C, exhibiting typical FM nature. For temperatures much higher than the T_C, the field dependence of the magnetization has a linear relation, indicating typical PM nature. Moreover, neither inflection nor negative slope in the Arrott plots of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ as shown in Fig. 4(b) indicates a characteristic of second-order FM-to-PM transition. It can also be seen from Fig. 4(a) that the isothermal magnetization curves obtained well above T_C show strong curvatures at low fields. Similar results have been observed in some other intermetallic compounds.\cite{18–20} This may result from the existence of short-range ferromagnetic correlations in the PM state. To investigate the reversibility of the magnetic transitions in Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$, the M–H curves were measured respectively in field increasing and decreasing modes around T_C. There is no magnetic hysteresis in each curve shown, indicating the perfect magnetic reversibility of the magnetic transitions in Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$.

The ΔS_M of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ has been calculated from isothermal magnetization data by using the Maxwell relation $\Delta S_M = \int_{0}^{H} (\partial M/\partial T)_H dH$. Figure 5 shows the ΔS_M as a function of temperature and magnetic field. One can see from Fig. 5 that both the peak and the width of ΔS_M depend on the applied
magnetic field, and increase obviously with increasing field. No change in peak temperature of ΔS_M is observed and the ΔS_M shape shows a “λ”-type one as is usually seen in magnetic materials with a second-order magnetic transition. The maximal values of ΔS_M for Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ are found to be 3.1 J/kg·K and 5.9 J/kg·K at 297.5 K for a field change of 0–2 T and 0–5 T, respectively, which are smaller than those of pure Gd$^{[12]}$ but are comparable with those of Gd$_6$Co$_{1.67}$Si$_3$$^{[15–17]}$, Gd$_6Ni_{1.67}Si_3$$^{[16]}$, Gd$_7Pd_3$$^{[21]}$, Gd$_5Si_2Ge_2$ compound prepared with low purity (99%) commercial Gd metal$^{[22]}$ and Mn$_5$Ge$_2$Gd$_{0.9}$.$^{[23]}$ The large value of ΔS_M is due to the high saturation magnetization in Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$.

![Fig. 5. Temperature dependence of magnetic entropy change $-\Delta S_M$ for Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compound for different magnetic field changes.](image)

To evaluate applicability of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ as a room-temperature magnetic refrigerant material, its RC values have been estimated by using the approach suggested by Gschneidner et al.$^{[24]}$ The refrigerant capacity is defined as $RC = \int_{T_1}^{T_2} |\Delta S_M|dT$, where T_1 and T_2 are the temperatures corresponding to both sides of the half-maximum value of $-\Delta S_M$ peak. Calculations show that the maximal value of RC for Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ is 424 J/kg for a field change of 0–5 T, which is comparable to or much larger than those of some magnetocaloric materials with a second-order magnetic transition, such as LaFe$_{11.2}$Co$_{0.7}$Si$_{1.1}$ (~ 420 J/kg at 274 K)$^{[25]}$, La(Fe$_{0.92}$Co$_{0.08}$)$_{11.83}$Al$_{1.17}$ (~ 415 J/kg at 303 K)$^{[26]}$, LaFe$_{11.0}$Co$_{0.9}$Si$_{1.1}$ (~ 275 J/kg at 294 K)$^{[27]}$ and LaFe$_{11.2}$Co$_{0.7}$Si$_{1.1}$Co$_{0.1}$ (~ 320 J/kg at 290 K)$^{[28]}$ but their ΔS_M is larger than that of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$. Although some Gd- and Mn-based magnetocaloric materials with a first-order magnetic transition have a large ΔS_M, but their RC values are much smaller than that of Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ in a similar temperature range for a field change of 0–5 T, such as Gd$_5$Ge$_2$Si$_2$ (305 J/kg at 276 K)$^{[29]}$, Gd$_5$Ge$_{1.9}$Si$_{1.8}$Sn$_{0.4}$ (366 J/kg at 278 K)$^{[30]}$, MnFe$_{0.45}$As$_{0.55}$ (~ 359 J/kg at 282 K)$^{[31]}$, MnFe$_{0.45}$As$_{0.55}$ (~ 356 J/kg at 308 K)$^{[31]}$, where the RC values are estimated from the temperature dependence of ΔS_M in the literature. It can also be observed that both the values of ΔS_M and RC for Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ are comparable to those of Gd$_6$Co$_{1.67}$Si$_3$$^{[15,17]}$, and its RC value is larger than those of Gd$_5$Ge$_{1.9}$Si$_2$Fe$_{0.1}$ and the melt-spun Gd$_5$Si$_{1.8}$Ge$_{1.8}$Sn$_{0.4}$ ribbons prepared at 30 m/s$^{[30]}$ and they have values of ΔS_M close to each other (see Table 1). The present study shows that large RC and zero magnetic hysteresis are simultaneously achieved in Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compound.

<table>
<thead>
<tr>
<th>materials</th>
<th>T_C/K</th>
<th>$-\Delta S_M$/(J/kg·K)</th>
<th>RC/(J/kg)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd</td>
<td>293</td>
<td>9.7</td>
<td>556</td>
<td>[12]</td>
</tr>
<tr>
<td>Gd6Co${2}$Si$_3$</td>
<td>295</td>
<td>6.3</td>
<td>503</td>
<td>[12]</td>
</tr>
<tr>
<td>Gd6Co${1.67}$Si$_3$</td>
<td>298</td>
<td>5.2</td>
<td>440</td>
<td>[15]</td>
</tr>
<tr>
<td>Gd6Co${1.67}$Si$_3$</td>
<td>300</td>
<td>5.8</td>
<td>426</td>
<td>[17]</td>
</tr>
<tr>
<td>Gd5Ge${1.9}$Si2Fe${0.1}$</td>
<td>276</td>
<td>7.0</td>
<td>360</td>
<td>[29]</td>
</tr>
<tr>
<td>Gd5Si${1.8}$Ge${1.8}$Sn${0.4}$</td>
<td>278</td>
<td>6.5</td>
<td>335</td>
<td>[30]</td>
</tr>
<tr>
<td>Gd6Co${1.67}$Si${2.5}$Ge${0.5}$</td>
<td>296</td>
<td>5.9</td>
<td>424</td>
<td>this work</td>
</tr>
</tbody>
</table>

4. Conclusion

In conclusion, the Gd$_6$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compound with a hexagonal Ce$_6$Ni$_2$Si$_3$-type structure undergoes a ferromagnetic ordering below the Curie temperature $T_C = 296$ K. A good magnetocaloric property is observed.
The maximal value of ΔS_M is $5.9 \text{ J/kg} \cdot \text{K}$ for a magnetic field change of 0–5 T, which originates from a reversible second-order magnetic transition. The peak of the ΔS_M–T curve shows a broad distribution and the full width at half maximum of the ΔS_M peak is about 101 K under a magnetic field of 5 T. The value of RC for a field change from 0 to 5 T is found to be 424 J/kg. Good magnetocaloric properties and especially considerable value of RC indicate that the $\text{Gd}_{6.67}\text{Co}_{1.67}\text{Si}_{2.5}\text{Ge}_{0.5}$ compound is a suitable candidate as magnetic refrigerants in the room temperature range.

References