Anisotropic magnetoresistance (AMR) is one of the most typical features of the manganite. It behaves differently from that of the conventional ferromagnetic (FM) metals/alloys, exhibiting a sharp peak slightly below the Curie temperature (Refs. 1, 3, and 4) and a phase shift of $\pi/2$ when the manganite undergoes an insulator-metal transition.

A possible origin for the AMR is the spin-orbit coupling that leads to asymmetric scattering of the charge carrier with different spin orientation. However, it is believed that the orbital tilting, which may affect the Mn 3 d-O 2 p overlap, a spin aligning along magnetic field could be an alternative source for the AMR. There are also explanations in terms of Lorentz force-induced conductivity reduction in electronic phase-separated films (Ref. 7) and orbital ordering produced anomaly in spin-orbit interaction.

Although the mechanism for the AMR is still under strong debate, spin-orbit coupling seems to be a key factor for the understanding of the unusual AMR in the manganites.

In addition to the AMR, the abnormal Hall effect provides an alternative access to the spin-orbit coupling. As theoretically predicted, for the electronic transport dominated by polaronic hopping, the anomalous Hall resistivity (AHR) will grow in proportional to the spin-orbit interaction and in reversely proportional to $n\cos^2(\Theta/2)$, where n is the carrier density and Θ is the average angle between adjacent magnetic moments. In the past decade, the Hall effect of the manganite has been intensively studied. However, less special attention has been paid to spin-orbit coupling.

A primary motivation of the present work is, via a combined study of the AMR and AHR, to get a deep understanding of the coupling between different degrees of freedom in the manganite. Nd$_{0.48}$Sr$_{0.52}$MnO$_3$ (NSMO) is a suitable sample for this purpose because of its distinctive features.

The NSMO films were grown on (110)-oriented SrTiO$_3$ substrates by the pulsed laser ablation technique. The temperature of the substrate was kept at 700 °C and the oxygen pressure at 60 Pa during the deposition. The thickness of the film is \sim180 nm, controlled by deposition time. Anisotropic transport and Hall resistance were measured by a physical property measurement system (PPMS-14 h). A bridge-shaped sample (0.1 mm in width and 0.4 mm in length) with four terminals and a Hall bar-shaped sample (0.2 mm in width and 3 mm in length) were used for corresponding measurements.

Figure 1 shows the temperature dependent resistivity (ρ) measured under different magnetic fields. Resistive anomalies corresponding to magnetic transitions can be identified in the ρ-T relations. The declining of the ρ-T curve upon cooling is caused by the FM transition, while the resistivity upturn beginning at T_N stems from the AFM transition. The magnitude of $\Delta \rho = \rho(0)-\rho(T_N)$ is much lower than that expected for a CE-AFM transition, and the ρ-T dependence is somewhat similar to that in the A-AFM single crystal of Nd$_{0.45}$Sr$_{0.55}$MnO$_3$, measured along the c-direction. These features are observed in both the [001] and [1-10] directions. Inset in Fig. 1 shows the magnetizations as a function of temperature. It clearly demonstrates the FM at $T_C \sim 260$ K and the AFM transitions at $T_N \sim 203$ K. These results suggest the occurrence of an orbital ordered AFM transition below T_N.

As expected, magnetic field strongly affects the magnetic transition, and the T_C varies from \sim236 K to \sim300 K and T_N from \sim200 K to \sim126 K for the field ascending from 0 to 10 T. Correspondingly, the resistivity is depressed significantly. However, the insulator-like behavior still holds at low temperatures under a field as high as 10 T.

The AMR in both the [001] and [1-10] directions was measured under the fields between 5 T and 10 T in the temperature interval from 40 K to 230 K. The angle θ between magnetic field and current was tuned from 0° to 360°. θ is set to 0° when the magnetic field is parallel to the current. The field direction is kept in the film plane. In Fig. 2, we show the angular dependent resistivity defined as $\Gamma(\theta) = [\rho(\theta)-\rho(0)]/\rho(0)$. In the [001] direction, $\Gamma(\theta)$ displays a two-fold symmetry. However, a four-fold component emerges in $\Gamma^{[1-10]}(\theta)$ below 140 K and develops with the decrease of temperature. It is a feature strongly dependent on magnetic field, weakening with the increase of H. The maximal AMR is -8%, obtained under a field of 10 T at the temperature of 40 K.

The isothermal magnetization was measured as a function of magnetic field at three typical temperatures 60 K,
for the experiment data. The dependence of the fitting parameters shown in Figs. 2(c) and 2(d). It is obvious that the above equations provide a satisfactory description of the AMR in the form: AMR \propto m^2\lambda_{SO,10}^2$ where m is the normalized magnetization and λ_{SO} is a parameter describing the spin-orbit coupling. Whether the abnormal AMR is due to an enhancement of the spin-orbit coupling is an issue deserves further investigations. For this purpose, the Hall resistivity ρ_{xy} of the NSMO films was studied.

As expected, the Hall resistivity ρ_{xy}, measured along the [1-10] direction, undergoes first a sudden drop, then a linear growth with the increase of magnetic field (not shown). The former is called anomalous Hall resistivity and the latter is the ordinary one. A simple description has been given to the AMR in the metallic FM state, the ordinary Hall resistivity ρ_{xy}--H curves. We estimate the carrier density n and ρ_{xy}--H curves near 10 T. As shown in Fig. 3, the carrier density exhibits first a slow then a rapid growth upon warming.

Based on the Hall resistivity, an expression for λ_{SO} can be derived: $\lambda_{SO}(\text{AHR}) \propto \rho_{xy} n \cos^2(\theta/2) = \rho_{xy} n (1 + m^2)/2$ here the
affect the applied Although the detailed shape of the NSMO film cannot be accurately determined under a high the conventional metals/alloys. The magnetization of the AMR mechanism for the manganites is different from that for

\[
\text{AMR} \propto \frac{\rho}{2}
\]

This actually implies the presence of some kind spin-orbit coupling. This form of spin-orbit coupling may affect the AMR in a manner different from that in the metals/alloys. The magnetization of the NSMO film cannot be accurately determined under a high applied Although the detailed shape of the \(M-T\) curve may affect the \(\lambda_{\text{SO}}^2-T\) relation, it cannot convert the jump to the drop of \(\lambda_{\text{SO}}^2(\text{AHR})\).

As well documented, spins have a preferred direction with respect to the orbital orientation for the manganite, and the orbital and spin ordering can be tuned by lattice strains.\(^{11}\) This actually implies the presence of some kind spin-orbit coupling. This form of spin-orbit coupling may affect the AMR in a manner different from that in the metals/alloys. Although the detailed mechanism for the AMR cannot be definitely determined, the present work seems to support the field-induced orbital-tilting proposed by O’Donnell et al. As well documented, the transport in the manganite realizes via the overlapped Mn 3d-O 2p orbits. Magnetic field may affect this process by modifying orbital orientation, thus the conduction band via aligning spins. This effect could be strongly anisotropic in the orbital-ordered AFM state due to the presence of preferred orbital orientation, which explains the significant AMR below the AFM transition.

The AMR of the charge-and-orbital-ordered SCMO film displays a crossover from positive to negative when the film transits from insulating to metallic. This feature is not observed in the present sample. However, a careful investigation of the fitting parameter in Fig. 2(d) reveals a reduction of \(A_{\text{FM}}\) upon cooling under the field of 5 T; \(A_{\text{FM}}\) is negative in insulating state and positive in metallic state. Therefore, the two-fold parameter of the NSMO film shares the same feature with that of SCMO. The four-fold symmetry is interesting. It does not hold for the lattice with the axis of \([1-10]\). This phenomenon may stem from the special symmetry of the AFM and orbital orderings of NSMO.

This work has been supported by the National Basic Research of China, the National Natural Science Foundation of China, the Knowledge Innovation Project of the Chinese Academy of Science, the Beijing Municipal Nature Science Foundation.
